タグ「接線」の検索結果

68ページ目:全994問中671問~680問を表示)
大分大学 国立 大分大学 2012年 第2問
曲線$C:y=x^2+px+q$と$y$軸との交点をQとし,$x$座標$t$が正である曲線$C$上の点をPとする.点Pにおける曲線$C$の接線を$\ell$とする.曲線$C$,接線$\ell$および$y$軸で囲まれた部分の面積を$S_1$とし,曲線$C$と直線PQで囲まれた部分の面積を$S_2$とする.

(1)$\ell$の方程式を求めなさい.
(2)$S_1$を$t$で表しなさい.
(3)$S_1:S_2$を求めなさい.
愛媛大学 国立 愛媛大学 2012年 第5問
実数$a$は$a>e$を満たすとし,曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$とする.

(1)$\ell$と$y$軸との交点を$\mathrm{B}$とし,$\ell$と$x$軸との交点を$\mathrm{C}$とする.$\mathrm{B}$と$\mathrm{C}$の座標を求めよ.
(2)$\ell$と$x$軸,$y$軸で囲まれた部分の面積を$S_1(a)$とし,曲線$y=\log x$と$x$軸および直線$x=a$で囲まれた部分の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を求めよ.
(3)$T(a)=S_2(a)-S_1(a)$とおく.$e^2 \leqq a \leqq e^3$における$T(a)$の最大値と最小値を求めよ.
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
早稲田大学 私立 早稲田大学 2012年 第1問
$k$を正の定数とする.$2$つの放物線
\[ \begin{array}{ll}
y=x^2 & \cdots\cdots① \\
y=x^2+k & \cdots\cdots②
\end{array} \]
を考える.次の問に答えよ.

(1)放物線$②$上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.ただし,点$\mathrm{P}$の$x$座標を$p$とする.
(2)放物線$①$と接線$\ell$の共有点の$x$座標を求めよ.
(3)放物線$①$と接線$\ell$で囲まれた領域$A$の面積を求めよ.
(4)不等式$x \geqq p$の表す領域と領域$A$の共通部分の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第4問
関数
\[ f(x) = \log(1+\sqrt{1-x^2}) - \sqrt{1-x^2} - \log x \quad (0<x<1) \]
について,つぎの問に答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.
(3)曲線$y=f(x)$上を動く点を$\mathrm{P}$とする.点$\mathrm{Q}$は,曲線$y=f(x)$の$\mathrm{P}$における接線上にあり,$\mathrm{P}$との距離が$1$で,その$x$座標が$\mathrm{P}$の$x$座標より小さいものとする.$\mathrm{Q}$の軌跡を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
曲線上の点$\mathrm{P}$を通り,$\mathrm{P}$におけるこの曲線の接線$\ell$と直交する直線$m$をこの曲線の法線とよぶ.$a,\ b>0$とし,$2$次曲線$x^2 = 4a(y+b)$の法線が$(0,\ 2a)$を通るとき,接点$\mathrm{P}(p,\ q)$は
\[ p^2 = [(41)]ab, \quad q= [(42)] \]
をみたす.したがって条件をみたす接線と法線の組$(\ell,\ m)$は$2$組ある.この$4$本の直線で囲まれる$4$角形$S$の面積は$[(43)][(44)](a+b)\sqrt{ab}$である.また$2$本の法線と$2$次曲線で囲まれる部分で$S$に含まれる部分の面積は
\[ \left( \frac{[(45)][(46)]a+[(47)][(48)]b}{[49]} \right) \sqrt{ab} \]
である.
早稲田大学 私立 早稲田大学 2012年 第3問
実数係数の$x$の多項式で表された関数$f(x)$は,導関数$f^{\prime}(x)$がすべての実数$x$に対して
$f^\prime (x)>0$をみたし,かつ,$f^\prime (x)$は極大値をもつとする.実数$s$に対して,点$(s,\ f(s))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標を$s$の関数として$g(s)$と表す.

(1)導関数$g^\prime(s)$を求めよ.
(2)関数$g(s)$は極大値と極小値をもつことを示せ.
東京理科大学 私立 東京理科大学 2012年 第4問
関数$f(x)$を
\[ f(x) = \frac{\sqrt{2}}{6}x^3 + \frac{9}{2} \]
と定める.さらに,$\mathrm{O}$を原点とする座標平面上の曲線$C:y=f(x)$を考える.

(1)曲線$C$上の点$(2,\ f(2))$における接線を$\ell_1$とおく.直線$\ell_1$の方程式を求めよ.
(2)$\ell_1$を(1)で定めた直線とする.曲線$C$と直線$\ell_1$は点$(2,\ f(2))$以外にもう$1$つ共有点をもつ.その共有点の$x$座標を求めよ.
(3)$m$を実数とし,原点$\mathrm{O}$を通る直線$\ell_2:y=mx$を考える.曲線$C$と直線$\ell_2$が共有点をちょうど$2$個もつときの$m$の値を求めよ.
早稲田大学 私立 早稲田大学 2012年 第4問
円$C$とその内部の点$\mathrm{P}_0$が与えられている.初め$\mathrm{P}_0$にある動点が,円周上の点$\mathrm{P}_1$まで線分$\mathrm{P}_0 \mathrm{P}_1$上を動き,$\mathrm{P}_1$からは,$\mathrm{P}_1$における円$C$の接線$\ell_1$と線分$\mathrm{P}_0 \mathrm{P}_1$のなす角が$\ell_1$と線分$\mathrm{P}_1 \mathrm{P}_2$のなす角に等しくなるように向きを変えて,円周上の点$\mathrm{P}_2$まで線分$\mathrm{P}_1 \mathrm{P}_2$上を動く(図例$1$).以下,自然数$n$について,円周上の点$\mathrm{P}_n$に至ったあとは,$\mathrm{P}_n$における円$C$の接線$\ell_n$と線分$\mathrm{P}_{n-1} \mathrm{P}_n$のなす角が$\ell_n$と線分$\mathrm{P}_n \mathrm{P}_{n+1}$のなす角に等しくなるように向きを変え,円周上の点$\mathrm{P}_{n+1}$まで線分$\mathrm{P}_n \mathrm{P}_{n+1}$上を動き,この動きをくり返す(図例$2$).線分$\mathrm{P}_0 \mathrm{P}_1$と接線$\ell_1$のなす角を$\alpha (\displaystyle 0 \leqq \alpha \leqq \frac{\pi}{2})$とする.

(1)$\mathrm{P}_m=\mathrm{P}_1$となる$3$以上の自然数$m$が存在するような角$\alpha$をすべて決定せよ.
(2)点$\mathrm{P}_1$の位置によって角$\alpha$は変化し得る.角$\alpha$が最大となる$\mathrm{P}_1$の位置,および最小となる$\mathrm{P}_1$の位置を求めよ.
(3)$\mathrm{P}_4=\mathrm{P}_1$となる点$\mathrm{P}_1$がとれるような点$\mathrm{P}_0$の存在範囲を求めよ.
(図は省略)
明治大学 私立 明治大学 2012年 第3問
$xy$平面上の曲線$C:y=x^2$上に,原点$\mathrm{O}$と異なる$2$つの点$\mathrm{P}(s,\ s^2)$,$\mathrm{Q}(t,\ t^2)$がある.ただし,$s \neq t$とする.曲線$C$上の$\mathrm{P}$,$\mathrm{Q}$におけるそれぞれの接線を$\ell_1$,$\ell_2$とし,$\ell_1$,$\ell_2$の$x$軸との交点をそれぞれ$\mathrm{P}_0$,$\mathrm{Q}_0$とする.このとき,次の各設問の$[ ]$にふさわしい解を求め,解答欄に記入せよ.

(1)$\mathrm{P}_0$の座標は$\left( [ ],\ [ ] \right)$となり,$\mathrm{Q}_0$の座標は$\left( [ ],\ [ ] \right)$となる.
(2)$\ell_1$と$\ell_2$の交点$\mathrm{R}$の座標は$\left( [ ],\ [ ] \right)$である.
(3)$\mathrm{P}_0$,$\mathrm{Q}_0$,$\mathrm{R}$を通る円の方程式を
\[ (x-a)^2+(y-b)^2=c^2 \quad \cdots\cdots① \]
とおく.円の方程式$①$が$\mathrm{P}_0$,$\mathrm{Q}_0$を通ることと,$\mathrm{P}_0 \neq \mathrm{Q}_0$であることから
\[ s+t=[ ] \quad \cdots\cdots② \]
となる.
(4)円の方程式$①$が$\mathrm{P}_0$と$\mathrm{R}$を通ることと,$②$と$s \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots③ \]
となる.同じく$\mathrm{Q}_0$と$\mathrm{R}$を通ることと,$②$と$t \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots④ \]
となる.$②$,$③$,$④$より,$a \neq 0$のとき
\[ st = \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑤ \]
を得る.同じく$a=0$のときも$⑤$が成り立つことがわかる.
(5)円の方程式$①$が$\mathrm{R}$を通ることを$a,\ b,\ c$を用いて表わすと
\[ \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑥ \]
となる.このことは,$①$が定点$\left( [ ],\ [ ] \right)$を通ることを意味する.
スポンサーリンク

「接線」とは・・・

 まだこのタグの説明は執筆されていません。