タグ「意味」の検索結果

1ページ目:全12問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
$xy$平面上を動く中心$(0,\ p)$,半径$r (0<r<p)$の円$C_1$が,放物線$C_2:y=x^2$と異なる$2$点で,直線$\ell:y=q (q>p)$と$1$点で接している(直線$\ell$は円$C_1$と連動して動くものとする).ここで$2$つの曲線が接するとは,交点における接線が一致することを意味する.このとき
\[ p=[$36$]r^2+\frac{[$37$]}{[$38$]} \]
であり,$\displaystyle r>\frac{[$39$]}{[$40$]}$を満たす.また,放物線$C_2$と直線$\ell$の交点の$x$座標は
\[ \pm \left( [$41$]r+\frac{[$42$]}{[$43$]} \right) \]
である.このとき,放物線$C_2$と直線$\ell$で囲まれた領域の面積は
\[ \frac{[$44$]}{[$45$]}r^3+[$46$]r^2+[$47$]r+\frac{[$48$]}{[$49$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のように放物線
\[ C:y=\frac{1}{2}x^2+ax+b \]
($a,\ b$は定数)が$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=x^2-4x+5 \]
に接している.

ここで,$2$つの曲線が交点$\mathrm{P}$で接するとは,$\mathrm{P}$における接線が一致することを意味し,このとき,$\mathrm{P}$を接点という.
このとき,$C$と$C_1$の接点の$x$座標は$\displaystyle \frac{[$43$][$44$]}{[$45$][$46$]}$,$C$と$C_2$の接点の$x$座標は$\displaystyle \frac{[$47$][$48$]}{[$49$][$50$]}$である.また,$3$つの放物線に囲まれた部分の面積は$\displaystyle \frac{[$51$][$52$]}{[$53$][$54$]}$である.

\end{mawarikomi}
広島女学院大学 私立 広島女学院大学 2016年 第3問
下の表は,ある高校の生徒$30$人の$2$つの科目$x$と$y$のテスト(点)の得点をまとめたものである.数値は,四捨五入していない正確な値とし,次の問いに答えよ.ただし,$\overline{x}$,$\overline{y}$はそれぞれ科目$x$,$y$の平均を意味し,$\sqrt{1.64}=1.28$,$\sqrt{2.73}=1.65$とする.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
番号 & $x$ & $y$ & $x-\overline{x}$ & $(x-\overline{x})^2$ & $y-\overline{y}$ & $(y-\overline{y})^2$ & $(x-\overline{x})(y-\overline{y})$ \\ \hline
$1$ & $38$ & $39$ & $-23$ & $529$ & $-29$ & $841$ & $667$ \\ \hline
$2$ & $40$ & $50$ & $-21$ & $441$ & $-18$ & $324$ & $378$ \\ \hline
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\ \hline
$29$ & $80$ & $90$ & $19$ & $361$ & $22$ & $484$ & $418$ \\ \hline
$30$ & $82$ & $96$ & $21$ & $441$ & $28$ & $784$ & $588$ \\ \hline
合計 & $1830$ & $[$12$]$ & $0$ & $4932$ & $0$ & $8190$ & $3181$ \\ \hline
平均値 & $61$ & $[$13$]$ & & & & & \\ \hline
中央値 & $60$ & $63$ & & & & & \\ \hline
\end{tabular}


(1)$[$12$]$,$[$13$]$の値を求めよ.
(2)科目$x,\ y$のそれぞれの分散${s_x}^2,\ {s_y}^2$を求めよ.小数点以下を四捨五入して整数値で求めよ.${s_x}^2=[$14$]$,${s_y}^2=[$15$]$
(3)科目$x,\ y$の共分散$s_{xy}$を求めよ.小数点以下を四捨五入して整数値で求めよ.$s_{xy}=[$16$]$
(4)科目$x$と$y$の相関係数$r$を求めよ.小数第$3$位を四捨五入して小数第$2$位まで求めよ.$r=[$17$]$
(5)科目$x$と$y$の散布図として適切なものを下の(ア),(イ),(ウ)の図から選べ.$[$18$]$
(図は省略)
横浜市立大学 公立 横浜市立大学 2016年 第3問
関数$y=\tan x$は,区間$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$で単調増加である.したがって,この区間で逆関数を作ることが出来る.それを
\[ y=\phi(x) \quad (-\infty<x<\infty) \]
と書く(この逆関数を$\mathrm{Arctan} \ x$と書く参考書もある).正確を期すために,$\displaystyle -\frac{\pi}{2}<\phi(x)<\frac{\pi}{2}$としておく.以下の問いに答えよ.ただし,「$-\infty<x<\infty$」は「$x$は実数」という意味である.

(1)関数$f(x)$を
\[ f(x)=\frac{1}{4 \sqrt{2}} \log \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}+\frac{1}{2 \sqrt{2}} \left\{ \phi(\sqrt{2}x+1)+\phi(\sqrt{2}x-1) \right\} \]
とおく.$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)積分
\[ \int_0^1 \frac{1}{x^4+1} \, dx \]
を求めたい.正確な値は求められないので,以下のようにする.即ち,関数$G(x)$で
\[ \int_0^1 \frac{1}{x^4+1} \, dx=G(\sqrt{2}+1) \]
となる関数を求めよ.
(3)積分の等式
\[ \int_0^\pi \frac{x \sin x}{1+\cos^4 x} \, dx=\pi \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^4 x} \, dx \]
を示せ.
(4)積分
\[ \int_0^{\pi} \frac{x \sin x}{1+\cos^4 x} \, dx \]
を求めよ.
早稲田大学 私立 早稲田大学 2015年 第3問
平面上に長さ$1$のベクトル$\overrightarrow{n}$がある.また,$a$は$a>1$をみたす定数とする.平面上のベクトル$\overrightarrow{x}$に対して,ベクトル$\overrightarrow{y}$を
\[ \overrightarrow{y}=\overrightarrow{x}-a(\overrightarrow{x} \cdot \overrightarrow{n}) \overrightarrow{n} \]
により定める.ただし,$\overrightarrow{x} \cdot \overrightarrow{n}$はベクトルの内積を意味し,$a(\overrightarrow{x} \cdot \overrightarrow{n})$はその$a$倍の実数を表している.

(1)すべてのベクトル$\overrightarrow{x}$に対して$|\overrightarrow{x}|=|\overrightarrow{y}|$が成り立つための必要十分条件は,$a=2$であることを示せ.
(2)$\overrightarrow{x} \neq \overrightarrow{\mathrm{0}}$とする.$\overrightarrow{x}$と$\overrightarrow{n}$のなす角を$\theta$とし,$\overrightarrow{y}$と$\overrightarrow{n}$のなす角を$\phi$とする.このとき,$a$と$\cos \theta$を用いて$\cos \phi$を表せ.
兵庫県立大学 公立 兵庫県立大学 2015年 第1問
次の問に答えなさい.

(1)$2$つの解$\alpha=1+\sqrt{2}$,$\beta=\sqrt{3}$をもつ$2$次方程式を一つ求めなさい.
(2)ある$2$次方程式$f(x)=0$の解の$1$つが$\alpha=s+t \sqrt{2}$であった.このとき,もう一つの解$\beta$に関する次の議論は正しくないことを説明しなさい.
\begin{jituwaku}
$\alpha=s+t \sqrt{2}$から簡単な計算により,$\alpha^2-2s \alpha+s^2-2t^2=0$を得る.これは,$\alpha$が$x^2-2sx+s^2-2t^2=0$の解であることを意味することから,$f(x)=x^2-2sx+s^2-2t^2$がわかる.よって,$f(x)=0$のもう一つの解$\beta$は$x^2-2sx+s^2-2t^2=0$を解いて$\beta=s-t \sqrt{2}$と求まる.
\end{jituwaku}
(3)$2$次方程式$x^2+px+q=0$において,$p,\ q$は有理数とする.$\alpha=1+\sqrt{2}$がこの方程式の解であるとき,もう一方の解$\beta$を求めなさい.
信州大学 国立 信州大学 2014年 第1問
次の問いに答えよ.

(1)$0<\theta<\pi$のとき,不等式$\cos 3\theta+4 \cos^2 \theta<0$を満たす$\theta$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$の中点を$\mathrm{E}$とする.$2$直線$\mathrm{BE}$と$\mathrm{CD}$の交点を$\mathrm{P}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}$の和を求めよ.

{\bf 補足説明}
設問中の式の意味は
\[ \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}=\frac{1}{2}+\frac{1}{2+4}+\frac{1}{2+4+6}+\frac{1}{2+4+6+8}+\cdots \]
である.
長岡技術科学大学 国立 長岡技術科学大学 2013年 第4問
$2$チームが試合をする.$1$回の試合で一方が勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けは起こらないとする.先に$4$勝したチームを優勝とするとき,下の問いに答えなさい.

(1)第$4$試合で優勝が決まる確率を求めなさい.
(2)第$7$試合で優勝が決まる確率を求めなさい.
(3)$2$チームの勝ち数の差が,優勝が決まるまで常に$1$以下である確率を求めなさい.ただし,「$2$チームの勝ち数の差が$\cdots$常に$1$以下」とは「優勝決定時も含めて勝ち数の差は$1$以下」という意味である.
小樽商科大学 国立 小樽商科大学 2012年 第4問
$-1<x<1$を定義域とする関数$\displaystyle f_p(x)=\frac{x-p}{1-px}$,$\displaystyle f_q(x)=\frac{x-q}{1-qx}$ \ $(-1<p<1,\ -1<q<1)$について,次の問いに答えよ.

(1)定義域内のすべての$x$に対して,$-1<f_q(x)<1$を示せ.
(2)定義域内のすべての$x$に対して,$\displaystyle f_p(f_q(x))=\frac{x-r}{1-rx}$を満たすとき,$r$を$p$と$q$を用いて表し,$-1<r<1$を示せ.ただし,$f_p(f_q(x))$は$\displaystyle f_p(y)=\frac{y-p}{1-py}$に$y=f_q(x)$を代入したものを意味するものとする.
(3)定義域内のすべての$x$に対して,$f_p(f_q(x))=f_q(x)$を満たす$p$を求めよ.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上の曲線$C:y=x^2$上に,原点$\mathrm{O}$と異なる$2$つの点$\mathrm{P}(s,\ s^2)$,$\mathrm{Q}(t,\ t^2)$がある.ただし,$s \neq t$とする.曲線$C$上の$\mathrm{P}$,$\mathrm{Q}$におけるそれぞれの接線を$\ell_1$,$\ell_2$とし,$\ell_1$,$\ell_2$の$x$軸との交点をそれぞれ$\mathrm{P}_0$,$\mathrm{Q}_0$とする.このとき,次の各設問の$[ ]$にふさわしい解を求め,解答欄に記入せよ.

(1)$\mathrm{P}_0$の座標は$\left( [ ],\ [ ] \right)$となり,$\mathrm{Q}_0$の座標は$\left( [ ],\ [ ] \right)$となる.
(2)$\ell_1$と$\ell_2$の交点$\mathrm{R}$の座標は$\left( [ ],\ [ ] \right)$である.
(3)$\mathrm{P}_0$,$\mathrm{Q}_0$,$\mathrm{R}$を通る円の方程式を
\[ (x-a)^2+(y-b)^2=c^2 \quad \cdots\cdots① \]
とおく.円の方程式$①$が$\mathrm{P}_0$,$\mathrm{Q}_0$を通ることと,$\mathrm{P}_0 \neq \mathrm{Q}_0$であることから
\[ s+t=[ ] \quad \cdots\cdots② \]
となる.
(4)円の方程式$①$が$\mathrm{P}_0$と$\mathrm{R}$を通ることと,$②$と$s \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots③ \]
となる.同じく$\mathrm{Q}_0$と$\mathrm{R}$を通ることと,$②$と$t \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots④ \]
となる.$②$,$③$,$④$より,$a \neq 0$のとき
\[ st = \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑤ \]
を得る.同じく$a=0$のときも$⑤$が成り立つことがわかる.
(5)円の方程式$①$が$\mathrm{R}$を通ることを$a,\ b,\ c$を用いて表わすと
\[ \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑥ \]
となる.このことは,$①$が定点$\left( [ ],\ [ ] \right)$を通ることを意味する.
スポンサーリンク

「意味」とは・・・

 まだこのタグの説明は執筆されていません。