タグ「当たり」の検索結果

2ページ目:全27問中11問~20問を表示)
大分大学 国立 大分大学 2014年 第1問
次の各問いに答えなさい.

(1)$n$本中$k$本の当たりが入ったクジを$n$人で順番に引く.引いたクジは元に戻さないとして,$i$番目にクジを引く人の当たる確率が$\displaystyle \frac{k}{n}$であることを示しなさい.ただし,$0<k<n$とする.
(2)関数$y_1=\sin x$と$y_2=2 \sin (a-x)$について,$y=y_1+y_2$の最大値が$\sqrt{7}$になるとき,定数$a$の値を求めなさい.
(3)放物線$y=ax^2$と直線$y=bx$で囲まれる部分の面積を$2$等分する直線$x=p$を求めなさい.ただし,$a,\ b>0$とする.
高知大学 国立 高知大学 2014年 第4問
$k$は$1$以上の整数であるとする.連続した整数が書かれた$2^k-1$枚のカードが$1$組あり,その中に無作為に選ばれた当たりが一枚だけ含まれているとする.次のようなルールで当たりのカードにたどりつくことを考える.

(i) カードのうち,ちょうど真ん中の整数の書かれたカードをひく.それが当たりなら終了する.
(ii) ハズレならば,真ん中の整数より大きいカードの組と小さいカードの組に分ける.
(iii) 当たりのカードの含まれた組を教えてもらい,その組に対して,$(ⅰ)$に戻って繰り返す.

このルールのもとで,ひいたカードの枚数の期待値を$E_k$とおく.このとき,次の問いに答えなさい.

(1)$E_1,\ E_2,\ E_3,\ E_4$を求めよ.
(2)$E_{k+1}$を$E_k$を用いて表せ.
(3)$\displaystyle d_k=E_k-\frac{1}{{2}^{k}}(E_k+1)$とおくとき,$d_k$のみたす漸化式を求めよ.
(4)$E_k$を求めよ.
(5)$\displaystyle \lim_{k \to \infty}(E_k-k)$を求めよ.ただし,$\displaystyle \lim_{k \to \infty} \frac{k}{{2}^{k}}=0$であることを用いてもよい.
北海道薬科大学 私立 北海道薬科大学 2014年 第1問
次の各設問に答えよ.

(1)$\displaystyle \frac{1715}{414}=[ア]+\frac{1}{[イ]+\displaystyle\frac{1}{[ウエ]}}$と表すことができる.

(2)$y=x^2+2x+5$を$x$軸方向に$p$,$y$軸方向に$q$だけ平行移動して得られる$2$次関数のグラフが点$(0,\ 16)$を通り,最小値が$7$となるとき,正の実数$p,\ q$の値は$p=[オ]$,$q=[カ]$である.
(3)不等式$\displaystyle -1<\log_4 x-\log_2 x<\frac{3}{2}$を満たす$x$の値の範囲は$\displaystyle \frac{[キ]}{[ク]}<x<[ケ]$である.
(4)$10$本のくじがあって,そのうち$3$本が当たりくじであるとする.引いたくじを元にもどさないでくじを引くとき,$7$本目までに当たりくじを引く確率は$\displaystyle \frac{[コサシ]}{[スセソ]}$である.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)整式$f(x)=ax^3+bx^2+cx+d$は,$x^2+3$で割ると余りは$x+3$であり,$x^2+x+2$で割ると余りは$3x+5$である.このとき,
\[ a=[ア],\quad b=[イ],\quad c=[ウ],\quad d=[エ] \]
である.
(2)$x$の関数
\[ f(x)=(\log_2 x)^2+\log_2 (\sqrt{2}x) \]
は,$\displaystyle x=\frac{\sqrt{[オ]}}{[カ]}$のとき最小値$\displaystyle \frac{[キ]}{[ク]}$をとる.
(3)総数$100$本のくじがあり,その当たりくじの賞金と本数は下の表の通りである.この中から$1$本のくじを引くときの賞金の期待値は$[ケ]$円であり,$2$本のくじを同時に引くときの賞金の合計金額の期待値は$[コ]$円である.


\begin{tabular}{|r|r|r|}
\hline
& 賞金 & 本数 \\ \hline
$1$等 & $1000$円 & $1$本 \\ \hline
$2$等 & $500$円 & $2$本 \\ \hline
$3$等 & $200$円 & $5$本 \\ \hline
はずれ & $0$円 & $92$本 \\ \hline
\end{tabular}
鳴門教育大学 国立 鳴門教育大学 2013年 第4問
$5$本のくじの中に当たりくじが$2$本ある.まず,$\mathrm{A}$さんが当たりくじを引くまで繰り返し引くとする.ただし,引いたくじは元に戻さない.このとき,次の問いに答えよ.

(1)$\mathrm{A}$さんが引くはずれくじの本数の期待値を求めよ.
(2)$\mathrm{A}$さんが当たりくじを引いた後,$\mathrm{B}$さんも同様に当たりくじを引くまで繰り返し引くとする.$\mathrm{B}$さんが引くはずれくじの本数の期待値を求めよ.
愛知工業大学 私立 愛知工業大学 2013年 第1問
次の$[ ]$を適当に補え.

(1)$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}+\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}=[ ]$,$\displaystyle \left( \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \right)^2+\left( \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \right)^2=[ ]$である.

(2)$10$本のくじの中に$2$本の当たりくじがある.このくじを$\mathrm{A}$君が$2$本引き,次に$\mathrm{B}$さんが$2$本引く.ただし,引いたくじはもとに戻さないとする.このとき,$\mathrm{A}$君が$1$本も当たらない確率は$[ ]$である.また,$\mathrm{B}$さんが少なくとも$1$本当たる確率は$[ ]$である.
(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{Q}$とする.このとき,$\overrightarrow{\mathrm{OP}}$と$\mathrm{OQ}$の内積は$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[ ]$である.また,$\triangle \mathrm{OPQ}$の面積は$[ ]$である.
(4)複素数$z=x+yi$($x,\ y$は実数,$i$は虚数単位)に対して,$|z|=\sqrt{x^2+y^2}$とする.このとき,$|z|=1$と$|z-i|=1$を同時にみたす複素数$z$は$z=[ ]$である.
(5)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=2 \sqrt{6}$のとき,$\sin \theta \cos \theta=[ ]$であり,$\theta=[ ]$である.
(6)$\displaystyle \int_0^{\frac{\pi}{4}} x \sin 3x \, dx=[ ]$
成城大学 私立 成城大学 2013年 第3問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$人がプレゼントを$1$つずつ持ち寄って,くじ引きで交換することになった(ただし,自分の持ってきたプレゼントが自分に当たる場合もありうる).誰がどのプレゼントに当たるかはどれも同程度に起こりやすいとするとき,次の問いに答えよ.

(1)プレゼントの当たり方は全部で何通りか.
(2)$\mathrm{A}$が自分のプレゼントに当たる当たり方は何通りか.
(3)$\mathrm{A}$と$\mathrm{B}$がともに自分のプレゼントに当たる当たり方は何通りか.
(4)誰も自分が持ってきたプレゼントに当たらない確率を求めよ.
京都女子大学 私立 京都女子大学 2012年 第3問
当たりくじが$a$本,はずれくじが$b$本,合計$n=a+b$本のくじがある.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がこの順に$1$本ずつ引くとき,次の確率を求めよ.ただし,$a \geqq 2$,$b \geqq 2$で,引いたくじはもとに戻さないとする.

(1)$3$人の中の誰かが当たる確率
(2)$3$人の中の$1$人だけが当たる確率
(3)$\mathrm{C}$が当たる確率
高崎経済大学 公立 高崎経済大学 2012年 第1問
以下の各問に答えよ.

(1)$3$次関数$f(x)=ax^3+bx^2-6$がある.$f^{\prime}(1)=7,\ f^{\prime}(-2)=4$となるように定数$a,\ b$の値を定めよ.
(2)次の計算をせよ.ただし,$i^2=-1$である.$\displaystyle \frac{2-i}{1+2i}$
(3)$(2x^2-1)^6$を展開したとき,$x^4$の項の係数を求めよ.
(4)$20$本のくじがあり,当たりくじの賞金と本数は$1$等$1000$円が$1$本,$2$等$500$円が$2$本,$3$等$300$円が$3$本である.ただし,はずれくじの賞金は$0$円である.いま,この中から$1$本のくじを引くときの賞金の期待値を求めよ.
(5)$x$は実数とする.命題「$x>0 \Longrightarrow |-x|>|x-1|$」の真偽を答えよ.また,偽であるときは反例をあげよ.
(6)初項$1$,公比$9$の等比数列$\{a_n\} \ (n=1,\ 2,\ \cdots)$を考える.不等式
\[ a_1+a_2+\cdots +a_k \leqq 2^{20}-2^{-3} \]
を満たす最大の整数$k$の値を求めよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とする.
(7)$\sqrt[12]{20000},\ \sqrt[3]{6+4\sqrt{3}},\ \sqrt[2]{4+\sqrt{2}}$の$3$数の大小を比較せよ.
(8)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$2:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{D}$,$2$直線$\mathrm{AD}$,$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
スポンサーリンク

「当たり」とは・・・

 まだこのタグの説明は執筆されていません。