タグ「引き分け」の検索結果

1ページ目:全32問中1問~10問を表示)
山形大学 国立 山形大学 2016年 第1問
$\mathrm{A}$,$\mathrm{B}$の$2$チームが試合をくり返し行い,先に$3$勝したチームを優勝とする.$1$回の試合で$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{2}{3}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{3}$で,引き分けはないものとする.このとき,次の問に答えよ.

(1)優勝が決まるまでに$\mathrm{B}$チームが少なくとも$1$勝する確率を求めよ.
(2)$3$試合目または$4$試合目で優勝が決まる確率を求めよ.
(3)$1$試合目で$\mathrm{A}$チームが勝ち,$\mathrm{A}$チームが優勝する確率を求めよ.
山形大学 国立 山形大学 2016年 第1問
$\mathrm{A}$,$\mathrm{B}$の$2$チームが試合をくり返し行い,先に$3$勝したチームを優勝とする.$1$回の試合で$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{2}{3}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{3}$で,引き分けはないものとする.このとき,次の問に答えよ.

(1)優勝が決まるまでに$\mathrm{B}$チームが少なくとも$1$勝する確率を求めよ.
(2)$3$試合目または$4$試合目で優勝が決まる確率を求めよ.
(3)$1$試合目で$\mathrm{A}$チームが勝ち,$\mathrm{A}$チームが優勝する確率を求めよ.
山形大学 国立 山形大学 2016年 第1問
$\mathrm{A}$,$\mathrm{B}$の$2$チームが試合をくり返し行い,先に$3$勝したチームを優勝とする.$1$回の試合で$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{2}{3}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{3}$で,引き分けはないものとする.このとき,次の問に答えよ.

(1)優勝が決まるまでに$\mathrm{B}$チームが少なくとも$1$勝する確率を求めよ.
(2)$3$試合目または$4$試合目で優勝が決まる確率を求めよ.
(3)$1$試合目で$\mathrm{A}$チームが勝ち,$\mathrm{A}$チームが優勝する確率を求めよ.
東京大学 国立 東京大学 2016年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つのチームが参加する野球の大会を開催する.以下の方式で試合を行い,$2$連勝したチームが出た時点で,そのチームを優勝チームとして大会は終了する.

(i) $1$試合目で$\mathrm{A}$と$\mathrm{B}$が対戦する.
(ii) $2$試合目で,$1$試合目の勝者と,$1$試合目で待機していた$\mathrm{C}$が対戦する.
(iii) $k$試合目で優勝チームが決まらない場合は,$k$試合目の勝者と,$k$試合目で待機していたチームが$k+1$試合目で対戦する.ここで$k$は$2$以上の整数とする.

なお,すべての対戦において,それぞれのチームが勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けはないものとする.

(1)ちょうど$5$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(2)$n$を$2$以上の整数とする.ちょうど$n$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(3)$m$を正の整数とする.総試合数が$3m$回以下で$\mathrm{A}$が優勝する確率を求めよ.
東京大学 国立 東京大学 2016年 第2問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つのチームが参加する野球の大会を開催する.以下の方式で試合を行い,$2$連勝したチームが出た時点で,そのチームを優勝チームとして大会は終了する.

(i) $1$試合目で$\mathrm{A}$と$\mathrm{B}$が対戦する.
(ii) $2$試合目で,$1$試合目の勝者と,$1$試合目で待機していた$\mathrm{C}$が対戦する.
(iii) $k$試合目で優勝チームが決まらない場合は,$k$試合目の勝者と,$k$試合目で待機していたチームが$k+1$試合目で対戦する.ここで$k$は$2$以上の整数とする.

なお,すべての対戦において,それぞれのチームが勝つ確率は$\displaystyle \frac{1}{2}$で,引き分けはないものとする.

(1)$n$を$2$以上の整数とする.ちょうど$n$試合目で$\mathrm{A}$が優勝する確率を求めよ.
(2)$m$を正の整数とする.総試合数が$3m$回以下で$\mathrm{A}$が優勝したとき,$\mathrm{A}$の最後の対戦相手が$\mathrm{B}$である条件付き確率を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
東京女子大学 私立 東京女子大学 2016年 第5問
$\mathrm{A}$と$\mathrm{B}$が続けて試合を行い,先に$3$勝したほうを優勝とする.各試合で$\mathrm{A}$の勝つ確率は$p$であり,引き分けはないものとする.$\mathrm{A}$が$1$回目の試合で勝ったときに,$\mathrm{A}$が優勝する確率を$F(p)$とする.このとき,以下の設問に答えよ.

(1)$F(p)$を$p$で表せ.

(2)定積分$\displaystyle \int_0^1 F(p) \, dp$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$チームが試合を行う.第$1$試合に$\mathrm{A}$と$\mathrm{B}$が対戦する.第$2$試合以降は,直前の試合に勝ったチームが残りの$1$チームと対戦することを繰り返す.最初に$2$連勝したチームを優勝とする.いずれのチームも試合に勝つ確率は$\displaystyle \frac{1}{2}$であり,各試合に引き分けはないものとする.このとき,

(1)第$5$試合で$\mathrm{A}$が優勝する確率は$\displaystyle \frac{[$41$]}{[$42$][$43$]}$であり,第$6$試合で$\mathrm{C}$が優勝する確率は$\displaystyle \frac{[$44$]}{[$45$][$46$]}$である.
(2)第$6$試合もしくはそれ以前に$\mathrm{B}$,$\mathrm{C}$が優勝する確率は,それぞれ$\displaystyle \frac{[$47$][$48$]}{[$49$][$50$]}$,$\displaystyle \frac{[$51$]}{[$52$][$53$]}$である.

(3)$\mathrm{A}$が第$1$試合で勝ち,かつ$\mathrm{A}$が第$3n$試合もしくはそれ以前に優勝する確率を$n$の式で表すと,$\displaystyle \frac{[$54$]}{[$55$]} \left\{ [$56$]-\left( \frac{[$57$]}{[$58$]} \right)^n \right\}$である.ただし,$n$は自然数とする.
スポンサーリンク

「引き分け」とは・・・

 まだこのタグの説明は執筆されていません。