タグ「延長線」の検索結果

1ページ目:全7問中1問~10問を表示)
旭川医科大学 国立 旭川医科大学 2016年 第2問
原点$\mathrm{O}$を中心とする単位円周上に$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,および$y>0$を満たす動点$\mathrm{C}(x,\ y)$がある.$\angle \mathrm{BAC}=\theta$とするとき,次の問いに答えよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.

(1)$\triangle \mathrm{ABC}$の面積を$\theta$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の内接円$\mathrm{O}_1$の半径$r_1$を$\theta$を用いて表せ.
(3)$x$軸,辺$\mathrm{AC}$の延長線,および辺$\mathrm{BC}$とそれぞれ接する円$\mathrm{O}_2$を考える.$x$軸上の接点を$\mathrm{D}$,辺$\mathrm{AC}$の$\mathrm{C}$側の延長上の接点を$\mathrm{E}$,そして辺$\mathrm{BC}$上の接点を$\mathrm{F}$とする.

(i) $\mathrm{AD}$の長さを$\theta$を用いて表せ.
(ii) 円$\mathrm{O}_2$の半径$r_2$を$\theta$を用いて表せ.
(iii) 円$\mathrm{O}_1$の中心を$\mathrm{I}$,円$\mathrm{O}_2$の中心を$\mathrm{J}$とする.$\displaystyle \frac{r_2}{r_1}=2$となるとき,$\triangle \mathrm{OIJ}$の面積を求めよ.
尾道市立大学 公立 尾道市立大学 2015年 第3問
$\triangle \mathrm{ABC}$は$1$辺の長さが$3$の正三角形とする.辺$\mathrm{BC}$の延長線上に$\mathrm{BC}=\mathrm{CD}$である点$\mathrm{D}$をとり,直線$\mathrm{AD}$と$\angle \mathrm{B}$の二等分線との交点を$\mathrm{E}$とする.このとき次の問いに答えなさい.

(1)線分$\mathrm{AD}$の長さを求めなさい.
(2)線分$\mathrm{AE}$,$\mathrm{ED}$の長さを求めなさい.
(3)線分$\mathrm{BE}$の長さを求めなさい.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第2問
$xy$平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 3)$を直径の両端とする円がある.図のようにこの円と$x$軸との原点以外の交点を$\mathrm{B}$,線分$\mathrm{OA}$に関して$\mathrm{B}$と反対側の円周上に$\angle \mathrm{COA}={45}^\circ$を満たす点$\mathrm{C}$をとり,線分$\mathrm{CA}$の延長線と$x$軸との交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\triangle \mathrm{AOD}$の外心を$\mathrm{P}$として,$\angle \mathrm{OPD}$の大きさを求めよ.
(2)点$\mathrm{D}$の座標を求めよ.
(3)$\triangle \mathrm{AOD}$の外接円の方程式を求めよ.
(4)$\angle \mathrm{AOB}$の二等分線と線分$\mathrm{AD}$との交点を$\mathrm{E}$とし,$\overrightarrow{\mathrm{OE}}$を成分表示せよ.
武庫川女子大学 私立 武庫川女子大学 2014年 第2問
次の空欄$[$19$]$~$[$42$]$にあてはまる数字を入れよ.ただし,空欄$[$19$]$,$[$21$]$には$+$または$-$の記号が入る.

(1)原点$\mathrm{O}$を中心とする半径$5$の円と直線$y=-2x$との交点のうち,$y$座標が正となる点を$\mathrm{A}$とする.線分$\mathrm{OA}$が$x$軸の正の向きとなす角を$\theta (0^\circ<\theta<{180}^\circ)$とする.

(i) $\tan \theta=[$19$][$20$]$であり,
$\cos \theta=[$21$] \frac{\sqrt{[$22$]}}{[$23$]}$であり,

点$\mathrm{A}$の座標は$\displaystyle \left( -\sqrt{[$24$]},\ [$25$] \sqrt{[$26$]} \right)$である.
(i) 点$(3 \sqrt{5},\ 0)$を$\mathrm{B}$とするとき,$\mathrm{AB}=[$27$][$28$]$であり,三角形$\mathrm{OAB}$の外接円の半径は$\displaystyle \frac{[$29$] \sqrt{[$30$]}}{[$31$]}$である.

(2)下図のように半径$r$の扇形$\mathrm{ABC}$があり,$\angle \mathrm{CAB}={90}^\circ$とする.直線$\mathrm{CA}$の延長線上に点$\mathrm{D}$をとり,$\displaystyle \sin \angle \mathrm{ADB}=\frac{1}{5}$とする.この扇形$\mathrm{ABC}$と三角形$\mathrm{ADB}$の両方からなる図形を直線$\mathrm{CD}$を軸として回転させてできる立体の表面積を$S$,体積を$V$とする.

(i) $\displaystyle r=\frac{3}{2}$のときの$S$は,$r=1$のときの$\displaystyle \frac{[$32$]}{[$33$]}$倍であり,$V$は$r=1$のときの$\displaystyle \frac{[$34$][$35$]}{[$36$][$37$]}$倍である.
(ii) $r=1$のとき,$S=[$38$] \pi$であり,
$\displaystyle V=\frac{[$39$]}{[$40$]} \left( [$41$]+\sqrt{[$42$]} \right) \pi$である.
(図は省略)
佐賀大学 国立 佐賀大学 2011年 第2問
$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$の中点を$\mathrm{D}$とする.点$\mathrm{B}$,$\mathrm{C}$から対辺またはその延長線上に垂線$\mathrm{BE}$,$\mathrm{CF}$を下ろす.$\triangle \mathrm{DEF}$が正三角形となるとき,$\angle \mathrm{A}$の大きさを求めよ.
旭川医科大学 国立 旭川医科大学 2011年 第1問
$\triangle \mathrm{ABC}$は$\mathrm{AB}=\mathrm{AC}$の$2$等辺三角形とする.$\mathrm{D}$を辺$\mathrm{BC}$上の点とし,$\mathrm{AD}$の延長線が$\triangle \mathrm{ABC}$の外接円と交わる点を$\mathrm{P}$とする.次の問いに答えよ.

(1)$\mathrm{AP}=\mathrm{BP}+\mathrm{CP}$であるとき,$\triangle \mathrm{ABC}$は正三角形であることを示せ.
(2)$\displaystyle \frac{1}{\mathrm{BP}}+\frac{1}{\mathrm{CP}}=\frac{1}{\mathrm{DP}}$であるとき,$\triangle \mathrm{ABC}$は正三角形であることを示せ.
高知工科大学 公立 高知工科大学 2011年 第2問
$\triangle$ABCの頂点を通らない直線$\ell$が,辺AC,辺BCのB方向への延長線,および辺ABと,それぞれ点P,Q,Rで交わり,
\[ \text{AP}:\text{PC}=\alpha:1,\quad \text{CQ}:\text{QB}=\beta:1 \]
であるとする.$\overrightarrow{\mathrm{CA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{CB}}=\overrightarrow{b}$として,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を$\alpha,\ \beta,\ \overrightarrow{a},\ \overrightarrow{b}$で表し,等式$\displaystyle \frac{\text{AP}}{\text{PC}} \cdot \frac{\text{CQ}}{\text{QB}} \cdot \frac{\text{BR}}{\text{RA}}=1$を証明せよ.
(2)$\triangle$QRB,$\triangle$BCR,$\triangle$APRの面積比が$1:2:3$のとき,$\triangle$APRと$\triangle$CPRの面積比を求めよ.
(3)(2)のとき,直線CRと直線AQの交点をDとする.線分の長さの比$\text{AD}:\text{QD}$を求めよ.
スポンサーリンク

「延長線」とは・・・

 まだこのタグの説明は執筆されていません。