「座標」について
タグ「座標」の検索結果
(41ページ目:全2097問中401問~410問を表示) 国立 島根大学 2015年 第4問
$xy$平面において,点$\mathrm{P}(x,\ y)$と点$(2,\ 0)$の距離が,点$\mathrm{P}$と直線$x=1$の距離の$\sqrt{2}$倍と等しくなるような点$\mathrm{P}$の描く曲線を$C$とする.このとき,次の問いに答えよ.
(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
(1)曲線$C$の方程式を求めよ.
(2)$t$を$0$でない実数とし,曲線$C$と直線$x+y=t$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
(3)$(2)$で求めた点$\mathrm{Q}$から$x$軸に下ろした垂線を$\mathrm{QH}$とする.$t$が$2 \leqq t \leqq 4$の範囲を動くとき,線分$\mathrm{QH}$が通過してできる図形の面積を求めよ.
国立 長崎大学 2015年 第4問
自然対数の底を$e$とする.区間$x \geqq 0$上で定義される関数
\[ f(x)=e^{-x} \sin x \]
を考え,曲線$y=f(x)$と$x$軸との交点を,$x$座標の小さい順に並べる.それらを,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.点$\mathrm{P}_0$は原点である.
自然数$n (n=1,\ 2,\ 3,\ \cdots)$に対して,線分$\mathrm{P}_{n-1} \mathrm{P}_n$と$y=f(x)$で囲まれた図形の面積を$S_n$とする.以下の問いに答えよ.
(1)点$\mathrm{P}_n$の$x$座標を求めよ.
(2)面積$S_n$を求めよ.
(3)$\displaystyle I_n=\sum_{k=1}^n S_k$とする.このとき,$I_n$と$\displaystyle \lim_{n \to \infty} I_n$を求めよ.
\[ f(x)=e^{-x} \sin x \]
を考え,曲線$y=f(x)$と$x$軸との交点を,$x$座標の小さい順に並べる.それらを,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$とする.点$\mathrm{P}_0$は原点である.
自然数$n (n=1,\ 2,\ 3,\ \cdots)$に対して,線分$\mathrm{P}_{n-1} \mathrm{P}_n$と$y=f(x)$で囲まれた図形の面積を$S_n$とする.以下の問いに答えよ.
(1)点$\mathrm{P}_n$の$x$座標を求めよ.
(2)面積$S_n$を求めよ.
(3)$\displaystyle I_n=\sum_{k=1}^n S_k$とする.このとき,$I_n$と$\displaystyle \lim_{n \to \infty} I_n$を求めよ.
国立 長崎大学 2015年 第4問
実数$x \neq 1$について定義される関数
\[ f(x)=\frac{1+x}{1-x} \]
を考える.以下の問いに答えよ.
(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.
(2)$\displaystyle \lim_{x \to -\infty} f(x)$,$\displaystyle \lim_{x \to 1-0} f(x)$,$\displaystyle \lim_{x \to 1+0} f(x)$,$\displaystyle \lim_{x \to \infty} f(x)$を求めよ.
(3)$x$座標と$y$座標がともに整数である点を格子点という.曲線$y=f(x)$上の格子点の座標をすべて求めよ.
(4)関数$y=f(x)$のグラフをかけ.
(5)$x \leqq 0$かつ$y \geqq 0$で表される領域において,$x$軸と$y$軸および曲線$y=f(x)$で囲まれた図形の面積を求めよ.
\[ f(x)=\frac{1+x}{1-x} \]
を考える.以下の問いに答えよ.
(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.
(2)$\displaystyle \lim_{x \to -\infty} f(x)$,$\displaystyle \lim_{x \to 1-0} f(x)$,$\displaystyle \lim_{x \to 1+0} f(x)$,$\displaystyle \lim_{x \to \infty} f(x)$を求めよ.
(3)$x$座標と$y$座標がともに整数である点を格子点という.曲線$y=f(x)$上の格子点の座標をすべて求めよ.
(4)関数$y=f(x)$のグラフをかけ.
(5)$x \leqq 0$かつ$y \geqq 0$で表される領域において,$x$軸と$y$軸および曲線$y=f(x)$で囲まれた図形の面積を求めよ.
国立 奈良教育大学 2015年 第4問
$1$つの円が定直線に接しながらすべることなく回転するとき,円周上の定点$\mathrm{P}$のえがく軌跡をサイクロイドという.
(図は省略)
上の図を参考に,以下の設問に答えよ.
(1)円$\mathrm{C}$を半径$1$の円,定直線を$x$軸とし,円$\mathrm{C}$が$x$軸に原点$\mathrm{O}$で接するとき,定点$\mathrm{P}$が$\mathrm{O}$の位置にあったとする.円$\mathrm{C}$が角$\theta$だけ回転したとき,円$\mathrm{C}$の中心の座標を求めよ.
(2)円$\mathrm{C}$が角$\theta$だけ回転したときの点$\mathrm{P}$の位置を$(x,\ y)$とするとき,$x,\ y$をそれぞれ$\theta$を使って表せ.
(3)$0 \leqq \theta \leqq 2\pi$において,$(2)$で与えられる点$\mathrm{P}$の軌跡(サイクロイド)と$x$軸とで囲まれた図形の面積を求めよ.
(図は省略)
上の図を参考に,以下の設問に答えよ.
(1)円$\mathrm{C}$を半径$1$の円,定直線を$x$軸とし,円$\mathrm{C}$が$x$軸に原点$\mathrm{O}$で接するとき,定点$\mathrm{P}$が$\mathrm{O}$の位置にあったとする.円$\mathrm{C}$が角$\theta$だけ回転したとき,円$\mathrm{C}$の中心の座標を求めよ.
(2)円$\mathrm{C}$が角$\theta$だけ回転したときの点$\mathrm{P}$の位置を$(x,\ y)$とするとき,$x,\ y$をそれぞれ$\theta$を使って表せ.
(3)$0 \leqq \theta \leqq 2\pi$において,$(2)$で与えられる点$\mathrm{P}$の軌跡(サイクロイド)と$x$軸とで囲まれた図形の面積を求めよ.
国立 宮崎大学 2015年 第3問
座標平面上に点$\mathrm{P}$があり,次のルールにより,点$\mathrm{P}$は移動する.
$a,\ b,\ c$の文字がそれぞれ$1$つずつ書かれた球$3$個が入った袋から,$1$個取り出してそこに書かれている文字を読み,その文字が
$a$のとき,点$\mathrm{P}$は$x$軸の正の方向へ$1$だけ移動し,
$b$のとき,点$\mathrm{P}$は$x$軸の負の方向へ$1$だけ移動し,
$c$のとき,点$\mathrm{P}$は$y$軸の正の方向へ$1$だけ移動する.
最初,点$\mathrm{P}$は原点$\mathrm{O}$にあるものとする.この試行を,取り出した球を元に戻しながら,$5$回続けて行う.例えば,これによって得られた$5$個の文字が順に$b \to a \to c \to c \to a$であるとすれば,上のルールにより,点$\mathrm{P}$の位置の座標は,
\[ (0,\ 0) \to (-1,\ 0) \to (0,\ 0) \to (0,\ 1) \to (0,\ 2) \to (1,\ 2) \]
と変化する.
このとき,次の各問に答えよ.
(1)$y$軸上で点$\mathrm{P}$の移動が終了する場合,終了したときの位置の座標をすべて求めよ.
(2)点$\mathrm{P}$の移動が終了する位置の相異なる座標の個数を求めよ.
(3)点$\mathrm{P}$の移動が終了する位置の座標$(x,\ y)$が$|x| \leqq 1$,$1 \leqq y \leqq 2$となる確率を求めよ.
$a,\ b,\ c$の文字がそれぞれ$1$つずつ書かれた球$3$個が入った袋から,$1$個取り出してそこに書かれている文字を読み,その文字が
$a$のとき,点$\mathrm{P}$は$x$軸の正の方向へ$1$だけ移動し,
$b$のとき,点$\mathrm{P}$は$x$軸の負の方向へ$1$だけ移動し,
$c$のとき,点$\mathrm{P}$は$y$軸の正の方向へ$1$だけ移動する.
最初,点$\mathrm{P}$は原点$\mathrm{O}$にあるものとする.この試行を,取り出した球を元に戻しながら,$5$回続けて行う.例えば,これによって得られた$5$個の文字が順に$b \to a \to c \to c \to a$であるとすれば,上のルールにより,点$\mathrm{P}$の位置の座標は,
\[ (0,\ 0) \to (-1,\ 0) \to (0,\ 0) \to (0,\ 1) \to (0,\ 2) \to (1,\ 2) \]
と変化する.
このとき,次の各問に答えよ.
(1)$y$軸上で点$\mathrm{P}$の移動が終了する場合,終了したときの位置の座標をすべて求めよ.
(2)点$\mathrm{P}$の移動が終了する位置の相異なる座標の個数を求めよ.
(3)点$\mathrm{P}$の移動が終了する位置の座標$(x,\ y)$が$|x| \leqq 1$,$1 \leqq y \leqq 2$となる確率を求めよ.
国立 宮崎大学 2015年 第4問
$a \geqq 0$,$b \geqq 0$とする.このとき,変数$x$の関数
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.
(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.
(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
国立 宮崎大学 2015年 第2問
$a \geqq 0$,$b \geqq 0$とする.このとき,変数$x$の関数
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.
(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.
(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
国立 宮崎大学 2015年 第3問
曲線$C:y=|x^2-6x|$と直線$\ell:y=kx$($k$は実数)について,次の各問に答えよ.
(1)曲線$C$を座標平面上に図示せよ.
(2)曲線$C$と直線$\ell$が異なる$3$つの共有点をもつような$k$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$C$と直線$\ell$で囲まれた$2$つの部分の面積の和が最小になるような$k$の値を求めよ.
(1)曲線$C$を座標平面上に図示せよ.
(2)曲線$C$と直線$\ell$が異なる$3$つの共有点をもつような$k$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$C$と直線$\ell$で囲まれた$2$つの部分の面積の和が最小になるような$k$の値を求めよ.
国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.
(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.
(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.