タグ「座標」の検索結果

28ページ目:全2097問中271問~280問を表示)
会津大学 公立 会津大学 2016年 第4問
曲線$y=e^{-x}$を$C$とし,$n$を自然数とする.このとき,以下の空欄をうめよ.

(1)曲線$C$上の点$\mathrm{P}(t,\ e^{-t})$における接線が$x$軸と交わる点を$\mathrm{Q}$とする.点$\mathrm{Q}$の$x$座標は$[イ]$である.
(2)一般に,曲線$C$上の点$\mathrm{P}_n$が与えられたとき,この点$\mathrm{P}_n$における接線が$x$軸と交わる点を$\mathrm{Q}_n$とし,点$\mathrm{Q}_n$を通り,$x$軸に垂直な直線と曲線$C$の交点を$\mathrm{P}_{n+1}$とする.$\mathrm{P}_1(0,\ 1)$から出発して,$\mathrm{Q}_1$,$\mathrm{P}_2$,$\mathrm{Q}_2$,$\cdots$のように点をとる.このとき,点$\mathrm{Q}_n$の$x$座標は$[ロ]$である.
(3)曲線$C$,直線$\mathrm{P}_n \mathrm{Q}_n$および直線$\mathrm{Q}_n \mathrm{P}_{n+1}$で囲まれた部分の面積を$S_n$とする.このとき,$S_n=[ハ]$である.
(4)$\displaystyle \sum_{n=1}^\infty S_n=[ニ]$である.
名古屋市立大学 公立 名古屋市立大学 2016年 第3問
原点を$\mathrm{O}$とする座標空間に$3$点$\mathrm{A}(a_1,\ a_2,\ 0)$,$\mathrm{B}(0,\ b_1,\ b_2)$,$\mathrm{C}(c_1,\ 0,\ c_2)$をとる.ただし,$a_1,\ a_2,\ b_1,\ b_2,\ c_1,\ c_2$は全て正とする.ベクトル$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$としたとき,次の問いに答えよ.

(1)三角形$\mathrm{OAB}$の面積$S$を$\overrightarrow{a},\ \overrightarrow{b}$の成分で表せ.
(2)空間内の点$\mathrm{P}$を考える.ベクトル$\overrightarrow{\mathrm{OP}}$が三角形$\mathrm{OAB}$を含む平面に垂直で大きさ$1$となるときの点$\mathrm{P}$の座標を$\overrightarrow{a}$,$\overrightarrow{b}$の成分で表せ.
(3)四面体$\mathrm{OABC}$の体積$V$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$の成分で表せ.
岐阜薬科大学 公立 岐阜薬科大学 2016年 第3問
関数$f(x)=\sqrt{3} \sin x-\cos x$および$g(x)=\sin x+\sqrt{3} \cos x$がある.以下の問いに答えよ.

(1)$0 \leqq x \leqq \pi$の範囲において,曲線$\displaystyle y=\frac{g(x)}{f(x)}$のグラフをかけ.
(2)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$\displaystyle y=\frac{g(x)}{f(x)}$と$\displaystyle y=\frac{f(x)}{g(x)}$の交点の座標を求めよ.
(3)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$\displaystyle y=\frac{g(x)}{f(x)}$と$\displaystyle y=\frac{f(x)}{g(x)}$,および$x$軸とで囲まれた部分の面積を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2016年 第8問
$y$軸上に点$\mathrm{A}$,$x$軸上に点$\mathrm{B}$という異なる$2$点をとる.線分$\mathrm{AB}$を$a:b$に外分する点を$\mathrm{C}$とし,その座標を$(p,\ q)$とする.このとき$b^2p^2+a^2q^2$の値を$p,\ q$を用いずに表せ.
名古屋市立大学 公立 名古屋市立大学 2016年 第1問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の円周上に,中心角$\theta$の弧$\mathrm{AB}$をとる.ただし,点$\mathrm{A}$の座標を$(1,\ 0)$,$\displaystyle 0<\theta \leqq \frac{\pi}{2}$とする.このとき,次の問いに答えよ.

(1)扇形$\mathrm{OAB}$を$x$軸の周りに$1$回転させた回転体の体積$V_1(\theta)$を求めよ.
(2)扇形$\mathrm{OAB}$を$y$軸の周りに$1$回転させた回転体の体積$V_2(\theta)$を求めよ.
(3)体積の差$V(\theta)=V_2(\theta)-V_1(\theta)$を$\theta$の関数として,そのグラフをかけ.
名古屋市立大学 公立 名古屋市立大学 2016年 第4問
$2$次関数$y=-x^2+2x+4 (-2 \leqq x \leqq 3)$の表す曲線において,$x=-2$,$x=3$での端点をそれぞれ,$\mathrm{A}$,$\mathrm{B}$とする.また,点$\mathrm{C}$をこの曲線上の点とする.次の問いに答えよ.

(1)この関数のグラフをかけ.
(2)三角形$\mathrm{ABC}$の面積が$15$となるとき,点$\mathrm{C}$の座標を求めよ.
(3)三角形$\mathrm{ABC}$の面積が最大となるとき,点$\mathrm{C}$の座標を求めよ.
(4)三角形$\mathrm{ABC}$が$\mathrm{AC}=\mathrm{BC}$の二等辺三角形となるとき,点$\mathrm{C}$の座標を求めよ.
名古屋市立大学 公立 名古屋市立大学 2016年 第3問
原点を$\mathrm{O}$とする座標空間に$3$点$\mathrm{A}(a_1,\ a_2,\ 0)$,$\mathrm{B}(0,\ b_1,\ b_2)$,$\mathrm{C}(c_1,\ 0,\ c_2)$をとる.ただし,$a_1,\ a_2,\ b_1,\ b_2,\ c_1,\ c_2$は全て正とする.ベクトル$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$としたとき,次の問いに答えよ.

(1)三角形$\mathrm{OAB}$の面積$S$を$\overrightarrow{a},\ \overrightarrow{b}$の成分で表せ.
(2)空間内の点$\mathrm{P}$を考える.ベクトル$\overrightarrow{\mathrm{OP}}$が三角形$\mathrm{OAB}$を含む平面に垂直で大きさ$1$となるときの点$\mathrm{P}$の座標を$\overrightarrow{a}$,$\overrightarrow{b}$の成分で表せ.
(3)四面体$\mathrm{OABC}$の体積$V$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$の成分で表せ.
名古屋市立大学 公立 名古屋市立大学 2016年 第3問
$\mathrm{A}$,$\mathrm{B}$の$2$人で交互にボールを的に向かって投げるゲームを行う.先にボールを的に当てた方を勝ちとしゲームを終了する.$\mathrm{A}$がボールを$1$回投げて的に当たる確率は$p$,$\mathrm{B}$がボールを$1$回投げて的に当たる確率は$q$である.ただし,$0<p<1$,$0<q<1$である.$\mathrm{A}$を先攻とし,$\mathrm{A}$の最初の投球を$1$回目,次の$\mathrm{B}$の投球を$2$回目,$\cdots$と数える.次の問いに答えよ.

(1)$n$回目の投球で$\mathrm{A}$がゲームに勝つ確率を求めよ.
(2)$\mathrm{A}$がゲームに勝つ確率を求めよ.
(3)$\mathrm{B}$がゲームに勝つ確率が,$\mathrm{A}$が勝つ確率より高くなるときの$p,\ q$の条件を求めよ.また,その条件を満たす$(p,\ q)$の領域を横軸$p$,縦軸$q$の座標平面に図示せよ.
兵庫県立大学 公立 兵庫県立大学 2016年 第5問
$C$を媒介変数$t (0 \leqq t \leqq \pi)$を用いて$x=1-\cos t$,$y=2 \sin t+\sin 2t$と表される座標平面上の曲線とする.

(1)曲線$C$上で$y$座標が最大となる点の座標を求め,曲線$C$の概形をかけ.
(2)曲線$C$と$x$軸とで囲まれた図形の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2016年 第3問
曲線$C:y=x^3-6x^2+9x$について,以下の問いに答えよ.

(1)曲線$C$の増減,極値,グラフの凹凸および変曲点を調べて,そのグラフをかけ.
(2)定数$a$に対し,直線$\ell:y=ax$が曲線$C$と$x=2$で交点をもつとき,$a$の値と全ての交点の座標を求めよ.
(3)$(2)$の条件のもとで曲線$C$と直線$\ell$とで囲まれた部分の面積を求めよ.
(4)直線$\ell$が曲線$C$と$x \geqq 0$の範囲で異なる$3$点で交わるような$a$の値の範囲を求めよ.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。