タグ「座標」の検索結果

25ページ目:全2097問中241問~250問を表示)
東京薬科大学 私立 東京薬科大学 2016年 第2問
次の問に答えよ.

(1)関数$y=\log_{\frac{1}{2}}(3-x)$のグラフ$C_1$は,$y=\log_2 (x+1)$のグラフ$C_2$を原点について対称移動し,$x$軸方向に$[ソ]$だけ平行移動したものであり,$C_1$と$C_2$の交点の座標は
\[ \left( [タ] \pm \sqrt{[チ]},\ \log_2 \left( [ツ] \pm \sqrt{[テ]} \right) \right) \quad \text{(複号同順)} \]
である.また,関数$y=\log_2 (x+1)-\log_{\frac{1}{2}}(3-x)$は$x=[ト]$のとき,最大値$[ナ]$をとる.
(2)赤球$3$個,青球$2$個,白球$1$個の計$6$個の球を横一列に並べるとき,並べ方は全部で$[ニヌ]$通りある.
玉川大学 私立 玉川大学 2016年 第4問
曲線$C:y=x^3-12x$とその上の点$\mathrm{A}(1,\ -11)$がある.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$を通る曲線$C$の接線$2$本を求めよ.
(2)曲線$y=x^3+px^2+qx+r$と直線$y=mx+n$が異なる$3$点で交わるとき,その交点の$x$座標を左から$a,\ b,\ c$とする.曲線と直線の囲む部分の左側,右側の面積をそれぞれ$S$,$S^\prime$とするとき,
\[ S-S^\prime=\frac{1}{6}(c-a)^3 \left( b-\frac{a+c}{2} \right) \]
を示せ.
(3)点$\mathrm{A}$を通り,$(1)$で求めた$2$直線の傾きの間の値を傾きとしてもつ直線$\ell$と曲線$C$の囲む$2$つの部分の面積が等しい.このとき,直線$\ell$を求めよ.ここで,$(2)$から$\displaystyle b=\frac{a+c}{2}$のとき,$S=S^\prime$となることに注意せよ.
東京薬科大学 私立 東京薬科大学 2016年 第5問
$x$の関数$f(x)$を
\[ f(x)=\left\{ \begin{array}{cl}
ax & (x \leqq 1) \\
(4-a)x+2(a-2) & (1<x) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
と定義する.ただし,$a$は$0<a<1$を満たす実数である.

(1)$y=f(x)$のグラフと,放物線$y=x^2$の共有点の個数は$[ロ]$である.このうち,$a$の値によらない共有点の座標は,$([ワ],\ [ヲ])$,$([ン],\ [あ])$である.ただし,$[ワ]<[ン]$とする.
(2)関数$y=f(x)$のグラフと,放物線$y=x^2$によって囲まれる図形の面積の総和を$S(a)$とすると,
\[ S(a)=\frac{[い]}{[う]}a^3-a+\frac{[え]}{[お]} \]
である.
(3)$S(a)$は$\displaystyle a=\frac{\sqrt{[か]}}{[き]}$のとき,最小値$\displaystyle \frac{[く]-\sqrt{[け]}}{[こ]}$をとる.
東洋大学 私立 東洋大学 2016年 第3問
曲線$y=\sin x \cos^3 x+x$上の$2$点$(0,\ 0)$,$\displaystyle \left( \frac{5}{4} \pi,\ \frac{5 \pi+1}{4} \right)$における接線をそれぞれ$\ell_1,\ \ell_2$とする.$\ell_1,\ \ell_2$の方程式は,


$\ell_1:y=[ア]x,$

$\displaystyle \ell_2:y=\frac{1}{[イ]}x+\frac{1}{[ウ]}+\frac{[エ]}{[オ]} \pi$


であり,$\ell_1$と$\ell_2$の交点の座標は,
\[ \left( \frac{[カ] \pi+[キ]}{[クケ]},\ \frac{[コ] \pi+[サ]}{[シ]} \right) \]
である.
東京経済大学 私立 東京経済大学 2016年 第3問
点$\mathrm{A}(-1,\ -3)$から円$x^2+y^2=5$に接線を引くと,接点の座標は$(-[セ],\ -[ソ])$と$([タ],\ -[チ])$である.また,$2$本の接線と円で囲まれた部分(ただし,円の内部を含まない)の面積は,$\displaystyle [ツ]-\frac{[テ]}{[ト]} \pi$である.
東京電機大学 私立 東京電機大学 2016年 第4問
次の各問に答えよ.

(1)不等式$x^2-x-5<|2x-1|$を解け.
(2)和が$22$,最小公倍数が$60$となる$2$つの自然数を求めよ.
(3)関数$y=4 \sin^2 x-4 \cos x-3 (0 \leqq x \leqq \pi)$の最大値を求めよ.またそのときの$x$の値を求めよ.
(4)空間の$3$点$\mathrm{A}(1,\ 1,\ 2)$,$\mathrm{B}(2,\ 3,\ 1)$,$\mathrm{C}(0,\ 1,\ 2)$を考える.点$\mathrm{C}$から直線$\mathrm{AB}$に下ろした垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.$\mathrm{H}$の座標を求めよ.
(5)$3$次方程式$x^3+x^2-2x+1=0$の$3$つの解を$a_1,\ a_2,\ a_3$とするとき,${a_1}^2+{a_2}^2+{a_3}^2$の値を求めよ.
東洋大学 私立 東洋大学 2016年 第4問
$xy$平面において,点$\mathrm{P}$が単位円周上の$y \geqq 0$の部分を動くとき,点$\mathrm{P}$から単位円周上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\displaystyle \mathrm{C} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$までの距離の和$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$を$L$とする.以下,$L$の最大値を求める.点$\mathrm{P}$の座標を$(\cos \theta,\ \sin \theta)$とおき,$L$を$\theta$の式で表すと,


$\displaystyle L=\sqrt{(\cos \theta-[ア])^2+\sin^2 \theta}+\sqrt{(\cos \theta+[イ])^2+\sin^2 \theta}$

$\displaystyle +\sqrt{\left( \cos \theta-\frac{1}{[ウ]} \right)^2+\left( \sin \theta-\frac{\sqrt{[エ]}}{[オ]} \right)^2}$


と表される.整理すると,たとえば,点$\mathrm{P}$が第$2$象限にあるとき,
\[ L=\left( [カ]+\sqrt{[キ]} \right) \sin \frac{\theta}{[ク]}+\cos \frac{\theta}{[ケ]} \]
となり,適当な実数$\alpha$を用いて
\[ L=\sqrt{[コ]+[サ] \sqrt{[シ]}} \sin \left( \frac{\theta}{[ス]}+\alpha \right) \]
と表すことができる.よって,$L$の最大値は,$\sqrt{[セ]}+\sqrt{[ソ]}$である.ただし,$[セ]>[ソ]$とする.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
広島経済大学 私立 広島経済大学 2016年 第3問
$a$を定数として,$2$次関数$y=x^2+3ax+6-2a$とそのグラフを考える.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$a=1$のとき,この関数のグラフの頂点の座標は$\displaystyle \left( -\displaystyle\frac{[$16$]}{[$17$]},\ \displaystyle\frac{[$18$]}{[$19$]} \right)$である.
(2)この関数のグラフが$x$軸と接するとき,$\displaystyle a=\frac{-[$20$] \pm [$21$] \sqrt{[$22$]}}{[$23$]}$である.
(3)$x=-2$のとき,この関数は最小値をとる.このとき,$\displaystyle a=\frac{[$24$]}{[$25$]}$,最小値は$\displaystyle -\frac{[$26$]}{[$27$]}$である.
(4)この関数の最小値が$-7$であるとき,$a=[$28$]$または$\displaystyle a=-\frac{[$29$]}{[$30$]}$である.
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{\sqrt{5}}{\sqrt{3}+\sqrt{2}}$,$\displaystyle y=\frac{\sqrt{5}}{\sqrt{3}-\sqrt{2}}$のとき,$x^2+y^2-xy=[アイ]$である.

(2)$\displaystyle 1+\frac{1}{2+\displaystyle\frac{1}{2+\displaystyle\frac{1}{x}}}=\frac{[ウ]x+[エ]}{[オ]x+[カ]}$である.
(3)$k$を定数とする.$2$次方程式$x^2+(3k+1)x+2k^2+2k-1=0$の$2$つの解を$\alpha,\ \beta$とし,$\beta-\alpha=2$とする.このとき,$k=[キ]$であり,$\alpha=[クケ]$,$\beta=[コサ]$である.
(4)不等式$|2x^2+x-2|>1$の解は$\displaystyle x<\frac{[シス]}{[セ]}$,$\displaystyle [ソタ]<x<\frac{[チ]}{[ツ]}$,$[テ]<x$である.
(5)等式$720x=y^3$を満たす正の整数$x,\ y$の組のうち,$x$が最小であるものは$x=[アイウ]$,$y=[エオ]$である.
(6)点$(1,\ 2)$に関して点$(2,\ -1)$と対称な点の座標は$([カ],\ [キ])$である.また,直線$2x-y-1=0$に関して,点$(2,\ -1)$と対称な点の座標は$\displaystyle \left( \frac{[クケ]}{[コ]},\ \frac{[サ]}{[シ]} \right)$である.
(7)$a,\ b$を定数とし,$a>0$とする.関数$y=ax^2-6ax+b (1 \leqq x \leqq 4)$の最大値が$5$,最小値が$-2$であるとき,$\displaystyle a=\frac{[ス]}{[セ]}$,$\displaystyle b=\frac{[ソタ]}{[チ]}$である.
(8)$2$個のさいころを同時に投げるとき,出る目の差の絶対値が$2$である確率は$\displaystyle \frac{[ツ]}{[テ]}$である.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。