タグ「座標」の検索結果

23ページ目:全2097問中221問~230問を表示)
金沢工業大学 私立 金沢工業大学 2016年 第4問
$2$つの関数$f(x)=x^3+ax^2+bx$,$g(x)=-x^2+cx+3$について,曲線$y=f(x)$,$y=g(x)$は点$(1,\ 0)$で同じ接線をもつとする.ただし,$a,\ b,\ c$は定数とする.

(1)$a=[アイ]$,$b=[ウ]$,$c=[エオ]$である.
(2)$2$つの曲線$y=f(x)$,$y=g(x)$の点$(1,\ 0)$以外の共有点の座標は$([カ],\ [キクケ])$である.
(3)$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた図形の面積は$\displaystyle \frac{[コ]}{[サ]}$である.
大阪歯科大学 私立 大阪歯科大学 2016年 第2問
平面上の放物線$y=f(x)$が$2$点$(0,\ 1)$,$(1,\ 0)$を通る.

(1)$f(x)=ax^2+bx+c$とするとき,係数$a,\ b,\ c$が満たす条件を求めよ.
(2)放物線$y=f(x)$が区間$0<x<1$で$x$軸と交差する.このときの$x$座標を$f(x)$の式とともに求めよ.
(3)$y=f(x)$と$x$軸,$y$軸とで囲まれる図形が$2$つの部分からなり,それぞれの面積が互いに等しいという.$f(x)$を求めよ.
龍谷大学 私立 龍谷大学 2016年 第1問
次の問いに答えなさい.

(1)実数$\alpha,\ \beta$は,$\left\{ \begin{array}{l}
\sin \alpha+\sin \beta=0 \\
\cos \alpha+\cos \beta=1
\end{array} \right.$を満たしている.$\cos (\alpha-\beta)$を求めなさい.

(2)次の不等式が表す領域を座標平面上に図示しなさい.
\[ (4x^2+9y^2-36)(4x^2-27y)>0 \]
(3)$2$つのさいころを同時に投げる.出る目の数の積を$n$とし,直線$3x+5y=n$と$x$軸,$y$軸との交点をそれぞれ$(a,\ 0)$,$(0,\ b)$とする.$a$と$b$がどちらも自然数となる確率を求めなさい.
東邦大学 私立 東邦大学 2016年 第2問
空間において,方程式$x^2+y^2+z^2-2x-8y-4z-28=0$で表される曲面を$C$とする.このとき,$C$は中心$([ウ],\ [エ],\ [オ])$,半径$[カ]$の球面である.また,$C$上の点$(-5,\ 6,\ 5)$で接する平面と$z$軸との交点の座標は$(0,\ 0,\ [キク])$である.
東邦大学 私立 東邦大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面において,点$\mathrm{P}(3,\ 1)$を通る直線が円$x^2+y^2=1$上の$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$\mathrm{A}$と$\mathrm{B}$はそれぞれ第$1$象限,第$2$象限内の点である.$\mathrm{PA}=\sqrt{5}$のとき,$\displaystyle \mathrm{AB}=\frac{[ケ] \sqrt{[コ]}}{[サ]}$であり,$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{[シ]}{[ス]}$である.
東邦大学 私立 東邦大学 2016年 第11問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の成分はそれぞれ$(1,\ 0)$,$(0,\ 1)$である.線分$\mathrm{AB}$を$(1-t):t$に内分する点を$\mathrm{C}$,線分$\mathrm{BO}$を$t:(1-t)$に内分する点を$\mathrm{D}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{AD}}$のなす角を$\theta$とするとき,$\displaystyle -\frac{1}{\sqrt{2}}<\cos \theta<\frac{1}{\sqrt{2}}$となる$t$の値の範囲は$\displaystyle 0<t<\frac{[ア]}{[イ]}$である.
東京医科大学 私立 東京医科大学 2016年 第1問
次の問いに答えよ.

(1)任意の正の数$t$に対して,座標平面上の$3$点$\mathrm{P}_t(3-t,\ 6+2t)$,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 6)$を頂点とする三角形$\mathrm{P}_t \mathrm{OA}$を考える.$\angle \mathrm{P}_t \mathrm{OA}=\theta_t$とすれば,
\[ \lim_{t \to \infty} \cos \theta_t=\frac{[ア]}{[イ]} \]
である.
(2)$a$を正の定数とする.$x$についての$2$次方程式$x^2+ax+4a=0$の$1$つの解が他の解の$4$倍であるとき,
\[ a=[ウエ] \]
である.
東京医科大学 私立 東京医科大学 2016年 第2問
次の問いに答えよ.

(1)平面上の$2$つのベクトル$\overrightarrow{a},\ \overrightarrow{b}$が条件
\[ |\overrightarrow{a}|=|\overrightarrow{b}|=1 \quad \text{かつ} \quad |\overrightarrow{a}-\overrightarrow{b}|^2=\frac{25}{44} \]
をみたすとする.ベクトル$\overrightarrow{c}$が正の数$t$を用いて
\[ \overrightarrow{c}=\overrightarrow{a}+t(\overrightarrow{b}-\overrightarrow{a}) \]
と表され,かつ$|\overrightarrow{c}|=\sqrt{5}$であるならば
\[ t=\frac{[アイ]}{[ウ]} \]
である.
(2)座標平面上の放物線$\displaystyle C_1:y=\frac{4}{5}x^2$と円$C_2:x^2+(y-a)^2=a^2$($a$は正の定数)が$3$つの共有点をもつような$a$の値の範囲は
\[ a>\frac{[エ]}{[オ]} \]
である.
東京医科大学 私立 東京医科大学 2016年 第4問
座標平面上の曲線$\displaystyle C:y=\frac{1}{1-x+x^2}$と$x$軸,$y$軸,および直線$x=1$で囲まれた図形を$F$とする.

(1)図形$F$の面積を$S$とすれば
\[ S=\frac{[ア] \sqrt{[イ]}}{[ウ]} \pi \]
である.
(2)図形$F$を$x$軸のまわりに$1$回転してできる立体の体積を$V$とすれば
\[ V=\frac{[エ] \sqrt{[オ]}}{[カキ]} \pi^2+\frac{[ク]}{[ケ]} \pi \]
である.
昭和薬科大学 私立 昭和薬科大学 2016年 第2問
$3$点$\mathrm{A}(6,\ 0,\ 0)$,$\mathrm{B}(2,\ 1,\ 1)$,$\mathrm{C}(0,\ 4,\ -1)$を通る平面$\alpha$に対して,以下の問に答えよ.

(1)平面$\alpha$の方程式を$ax+by+cz=6$としたとき,$a=[ナ]$,$b=[ニ]$,$c=[ヌ]$である.
(2)原点$\mathrm{O}$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とするとき,$\mathrm{H}$の座標は
\[ \left( \frac{[ネ]}{[ノ]},\ \frac{[ハ]}{[ヒ]},\ \frac{[フ]}{[ヘ]} \right) \]
である.
(3)平面$\alpha$上に点$\mathrm{A}$を中心とした半径$\sqrt{2}$の円$\beta$を考える.点$\mathrm{P}$が円$\beta$上を動くとき,$\mathrm{OP}$の最小値は$\sqrt{[ホマ]}$である.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。