タグ「座標」の検索結果

205ページ目:全2097問中2041問~2050問を表示)
関西大学 私立 関西大学 2010年 第3問
$x$の関数$y=|e^{-x|-a}$に対して,次の問いに答えよ.ここで$a$は$-\infty<a<\infty$の範囲の定数とする.

(1)$e^{-1}<a<1$であるとき,$x$の関数$y=|e^{-x|-a}$のグラフの概形を座標平面上にかけ.
(2)$\displaystyle f(a)=\int_0^1 |e^{-x|-a} \, dx$とおく.$-\infty<a<\infty$であるとき,$f(a)$を$a$を用いて表せ.
(3)$a$が$-\infty<a<\infty$であるとき,$f(a)$の最小値を求めよ.
獨協大学 私立 獨協大学 2010年 第3問
直線$\ell$と$m$が

直線$\ell$:$y=2x$
直線$m$:点$(2,\ 2)$を通る傾き$a$の直線(ただし,$a<0$)

と与えられているとき,以下の問題に答えよ.

(1)直線$\ell$と$m$の交点を$\mathrm{A}$としたとき,点$\mathrm{A}$の座標を求めよ.
(2)直線$m$と$x$軸の交点を$\mathrm{B}$としたとき,点$\mathrm{B}$の$x$座標を求めよ.
(3)原点を$\mathrm{O}$としたとき,三角形$\mathrm{AOB}$の面積$S$を求めよ.
(4)$(3)$で求めた面積$S$の値が$\displaystyle \frac{9}{2}$のとき直線$m$の傾き$a$の値を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第2問
$p \neq 0$として,$xy$座標平面上の直線$\ell$を$\ell:y=mx+p$,行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換を$f$とする.このとき下記の問いに答えなさい.

(1)$f$により,直線$\ell$上の各点がすべて直線$\ell$上の点に移る場合,$c,\ d$を$m,\ a,\ b$を用いて表すと,$c=[$1$]$,$d=[$2$]$となる.
(2)上問$(1)$で$m=-1$,$a=2$,$b \neq 1$とする.$f$により,直線$\ell$上の点$\mathrm{R}$が$\mathrm{R}$自身に移るとき,$\mathrm{R}$の座標を$b,\ p$を用いて表すと,$\mathrm{R}=([$3$],\ [$4$])$となる.
関西大学 私立 関西大学 2010年 第4問
次の$[ ]$をうめよ.

(1)$x^2-3x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\alpha^2+\beta^2=[$1$]$であり,さらに$\displaystyle \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=[$2$]$である.
(2)$xy$平面上の$3$点$(1,\ 2)$,$(2,\ 4)$,$(3,\ 1)$にあと$1$点$\mathrm{A}$を加えることにより,それらが平行四辺形の$4$つの頂点になるとする.このとき,$\mathrm{A}$の$y$座標をすべて求めると$[$3$]$である.
(3)$n$は自然数とする.$(x+y+1)^n$を展開したとき,$xy$の項の係数は$90$であった.このときの$n$の値は$[$4$]$である.
(4)$-1<x$において,関数$f(x)$は
\[ f(x)=\lim_{n \to \infty} \frac{x^n}{x^{n+2}+x^n+1} \]
で定義されている.$f(x)$を求めると,ある値$\alpha$で$f(x)$が連続にならないことがわかる.このとき$f(\alpha)$と等しい値をとるもうひとつの$x$は$[$5$]$である.
(5)$i=\sqrt{-1}$とする.複素数$\alpha=1+\sqrt{3}i$に対して,$\displaystyle \frac{(\alpha+2)^6}{\alpha^3}$の値は$[$6$]$である.
(6)$0<x \leqq \pi$とする.方程式
\[ \sin 3x+\sin x=\cos x \]
の解$x$をすべて求めると$[$7$]$である.
東京女子大学 私立 東京女子大学 2010年 第1問
$a$は$0 \leqq a \leqq 1$を満たす実数とする.関数$y=|x-a|$のグラフと円周$x^2+y^2=1$の$2$交点の中点を$\mathrm{M}$とする.

(1)$\mathrm{M}$の座標を$a$を用いて表せ.
(2)$a$が$0 \leqq a \leqq 1$の範囲を動くときの$\mathrm{M}$の軌跡を図示せよ.
東京女子大学 私立 東京女子大学 2010年 第5問
座標平面上に点$\mathrm{P}$と$\mathrm{Q}$があり,原点$\mathrm{O}$に対して$\overrightarrow{\mathrm{OQ}}=2 \overrightarrow{\mathrm{OP}}$という関係が成り立っている.$\mathrm{P}$が,点$(1,\ 1)$を中心とする半径$1$の円周$C$上をうごくとき,

(1)点$\mathrm{Q}$の描く図形$D$を図示せよ.
(2)$C$と$D$の交点の$x$座標をすべて求めよ.
東京女子大学 私立 東京女子大学 2010年 第7問
$2$つの曲線$y=e^x$と$y=a \sqrt{x}$の共有点が$1$個であるとき,次の問いに答えよ.

(1)定数$a$と共有点の座標を求めよ.
(2)この$2$つの曲線と$y$軸で囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2010年 第3問
$2$次関数$y=f(x)$のグラフは,頂点が$\displaystyle \left( \frac{3}{2},\ -\frac{7}{2} \right)$で,点$(3,\ 1)$を通る.以下の問いに答えよ.

(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2010年 第2問
放物線$C:y=x^2$について,次の問いに答えよ.

(1)点$(1,\ 1)$を通り傾きが$a$である直線の方程式を求めよ.
(2)$(1)$で求めた直線と放物線$C$の共有点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(3)線分$\mathrm{PQ}$の中点の軌跡の方程式を求めよ.ただし,$\mathrm{P}$と$\mathrm{Q}$が一致するとき,線分$\mathrm{PQ}$の中点とは$\mathrm{P}$を意味するものとする.
(4)$(3)$で求めた軌跡,放物線$C$および$y$軸で囲まれた図形の面積を求めよ.
神奈川大学 私立 神奈川大学 2010年 第1問
次の空欄$[ア]$~$[カ]$を適当に補え.

(1)円$x^2+y^2=3$と直線$x-y+k=0$が異なる$2$点で交わるとき,定数$k$の値の範囲は$[ア]$である.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,方程式$\cos 2x=5 \sin x-2$を解くと$x=[イ]$である.
(3)$t$を実数とする.$x$の$2$次関数$\displaystyle f(x)=\frac{1}{2}x^2-2tx+t$の最小値を$k$とする.$k$を最大にする$t$の値は$t=[ウ]$であり,そのときの$k$の値は$k=[エ]$である.
(4)$f(x)=x^3+3x^2$,$g(x)=2x^2$とする.$y=g(x)$のグラフを$x$軸方向に$-1$,$y$軸方向に$2$平行移動して得られるグラフの方程式を,$y=h(x)$とする.このとき,$y=h(x)$のグラフと$y=f(x)$のグラフの交点のうち,$x$座標の最も大きいものは$(x,\ y)=([オ],\ [カ])$である.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。