タグ「座標」の検索結果

2ページ目:全2097問中11問~20問を表示)
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
北海道大学 国立 北海道大学 2016年 第5問
空間の$2$点$\mathrm{A}(0,\ 0,\ 2)$,$\mathrm{B}(0,\ 1,\ 3)$を通る直線を$\ell$とし,$2$点$\mathrm{C}(1,\ 0,\ 0)$,$\mathrm{D}(1,\ 0,\ 1)$を通る直線を$m$とする.$a$を定数として,$\ell$上にも$m$上にもない点$\mathrm{P}(s,\ t,\ a)$を考える.

(1)$\mathrm{P}$から$\ell$に下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$から$m$に下ろした垂線と$m$の交点を$\mathrm{R}$とする.$\mathrm{Q}$,$\mathrm{R}$の座標をそれぞれ$s,\ t,\ a$を用いて表せ.
(2)$\mathrm{P}$を中心とし,$\ell$と$m$がともに接するような球面が存在するための条件を$s,\ t,\ a$の関係式で表せ.
(3)$s,\ t$と定数$a$が$(2)$の条件をみたすとき,平面上の点$(s,\ t)$の軌跡が放物線であることを示し,その焦点と準線を$a$を用いて表せ.
九州大学 国立 九州大学 2016年 第1問
座標平面上の曲線$C_1,\ C_2$をそれぞれ

$C_1:y=\log x \quad (x>0)$
$C_2:y=(x-1)(x-a)$

とする.ただし,$a$は実数である.$n$を自然数とするとき,曲線$C_1$,$C_2$が$2$点$\mathrm{P}$,$\mathrm{Q}$で交わり,$\mathrm{P}$,$\mathrm{Q}$の$x$座標はそれぞれ$1,\ n+1$となっている.また,曲線$C_1$と直線$\mathrm{PQ}$で囲まれた領域の面積を$S_n$,曲線$C_2$と直線$\mathrm{PQ}$で囲まれた領域の面積を$T_n$とする.このとき,以下の問いに答えよ.

(1)$a$を$n$の式で表し,$a>1$を示せ.
(2)$S_n$と$T_n$をそれぞれ$n$の式で表せ.

(3)極限値$\displaystyle \lim_{n \to \infty} \frac{S_n}{n \log T_n}$を求めよ.
北海道大学 国立 北海道大学 2016年 第2問
$f(x)=|x(x-2)|+|(x-1)(x-4)|+3x-10 (-2 \leqq x \leqq 4)$とおく.

(1)関数$y=f(x)$のグラフをかけ.グラフと$x$軸との$2$つの交点の$x$座標$\alpha$,$\beta (\alpha<\beta)$の値も求めよ.
(2)$(1)$の$\alpha,\ \beta$に対して,定積分$\displaystyle \int_{\alpha}^{\beta} f(x) \, dx$の値を求めよ.
広島大学 国立 広島大学 2016年 第1問
$a$を正の定数とし,座標平面上において,
\[ \text{円}C_1:x^2+y^2=1,\quad \text{放物線}C_2:y=ax^2+1 \]
を考える.$C_1$上の点$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$における$C_1$の接線$\ell$は点$\mathrm{Q}(s,\ t)$で$C_2$に接している.次の問いに答えよ.

(1)$s,\ t$および$a$を求めよ.
(2)$C_2,\ \ell$および$y$軸で囲まれた部分の面積を求めよ.
(3)円$C_1$上の点が点$\mathrm{P}$から点$\mathrm{R}(0,\ 1)$まで反時計回りに動いてできる円弧を$C_3$とする.$C_2$,$\ell$および$C_3$で囲まれた部分の面積を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第3問
座標空間内に
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(1,\ 2,\ 2),\quad \mathrm{B}(1,\ 0,\ -1),\quad \mathrm{C}(2,\ -1,\ 1) \]
を頂点とする四面体$\mathrm{OABC}$がある.$t>0$に対して半直線$\mathrm{OB}$上の点$\mathrm{P}$を$\mathrm{OB}:\mathrm{OP}=1:t$となるようにとる.

(1)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AP}}$を$t$を用いて表せ.
(2)$\triangle \mathrm{APC}$の面積を$S(t)$とおく.$S(t)$が最小になる$t$の値と,そのときの$S(t)$の値を求めよ.
(3)点$\mathrm{Q}$は直線$\mathrm{OB}$上にあり,点$\mathrm{R}$は直線$\mathrm{AC}$上にある.線分$\mathrm{QR}$の長さの最小値と,そのときの点$\mathrm{R}$の座標を求めよ.
九州大学 国立 九州大学 2016年 第3問
座標平面上で円$x^2+y^2=1$に内接する正六角形で,点$\mathrm{P}_0(1,\ 0)$を$1$つの頂点とするものを考える.この正六角形の頂点を$\mathrm{P}_0$から反時計まわりに順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$とする.ある頂点に置かれている$1$枚のコインに対し,$1$つのサイコロを$1$回投げ,出た目に応じてコインを次の規則にしたがって頂点上を動かす.


\mon[(規則)$(ⅰ)$] $1$から$5$までの目が出た場合は,出た目の数だけコインを反時計まわりに動かす.例えば,コインが$\mathrm{P}_4$にあるときに$4$の目が出た場合は$\mathrm{P}_2$まで動かす.
(ii) $6$の目が出た場合は,$x$軸に関して対称な位置にコインを動かす.ただし,コインが$x$軸上にあるときは動かさない.例えば,コインが$\mathrm{P}_5$にあるときに$6$の目が出た場合は$\mathrm{P}_1$に動かす.

はじめにコインを$1$枚だけ$\mathrm{P}_0$に置き,$1$つのサイコロを続けて何回か投げて,$1$回投げるごとに上の規則にしたがってコインを動かしていくゲームを考える.以下の問いに答えよ.

(1)$2$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(2)$3$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
(3)$n$を自然数とする.$n$回サイコロを投げた後に,コインが$\mathrm{P}_0$の位置にある確率を求めよ.
広島大学 国立 広島大学 2016年 第4問
$xy$平面上に原点を出発点として動く点$\mathrm{Q}$があり,次の試行を行う.

$1$枚の硬貨を投げ,表が出たら$\mathrm{Q}$は$x$軸の正の方向に$1$,裏が出たら$y$軸の正の方向に$1$動く.ただし,点$(3,\ 1)$に到達したら$\mathrm{Q}$は原点に戻る.

この試行を$n$回繰り返した後の$\mathrm{Q}$の座標を$(x_n,\ y_n)$とする.次の問いに答えよ.

(1)$(x_4,\ y_4)=(0,\ 0)$となる確率を求めよ.
(2)$(x_8,\ y_8)=(5,\ 3)$となる確率を求めよ.
(3)$x_8+y_8 \leqq 4$となる確率を求めよ.
(4)$x_{4n}+y_{4n} \leqq 4k$となる確率を$n$と$k$で表せ.ここで$k$は$n$以下の自然数とする.
広島大学 国立 広島大学 2016年 第4問
$xy$平面上に原点を出発点として動く点$\mathrm{Q}$があり,次の試行を行う.

$1$枚の硬貨を投げ,表が出たら$\mathrm{Q}$は$x$軸の正の方向に$1$,裏が出たら$y$軸の正の方向に$1$動く.ただし,点$(3,\ 1)$に到達したら$\mathrm{Q}$は原点に戻る.

この試行を$n$回繰り返した後の$\mathrm{Q}$の座標を$(x_n,\ y_n)$とする.次の問いに答えよ.

(1)$(x_4,\ y_4)=(0,\ 0)$となる確率を求めよ.
(2)$(x_8,\ y_8)=(5,\ 3)$となる確率を求めよ.
(3)$x_8+y_8 \leqq 4$となる確率を求めよ.
(4)$x_{4n}+y_{4n} \leqq 4k$となる確率を$n$と$k$で表せ.ここで$k$は$n$以下の自然数とする.
名古屋大学 国立 名古屋大学 2016年 第2問
$2$つの円$C:(x-1)^2+y^2=1$と$D:(x+2)^2+y^2=7^2$を考える.また原点を$\mathrm{O}(0,\ 0)$とする.このとき,次の問に答えよ.

(1)円$C$上に,$y$座標が正であるような点$\mathrm{P}$をとり,$x$軸の正の部分と線分$\mathrm{OP}$のなす角を$\theta$とする.このとき,点$\mathrm{P}$の座標と線分$\mathrm{OP}$の長さを$\theta$を用いて表せ.
(2)$(1)$でとった点$\mathrm{P}$を固定したまま,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積が最大になるときの$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が円$C$上を動き,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積の最大値を求めよ.

ただし$(2)$,$(3)$においては,$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$が同一直線上にあるときは,$\triangle \mathrm{OPQ}$の面積は$0$であるとする.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。