タグ「座標」の検索結果

19ページ目:全2097問中181問~190問を表示)
学習院大学 私立 学習院大学 2016年 第4問
連立不等式
\[ 2x-y-2 \geqq 0,\quad x \leqq \frac{5}{2},\quad y \geqq 1 \]
の表す領域を$D$とする.点$\mathrm{P}(x,\ y)$が領域$D$を動くとき,$\displaystyle \frac{y}{x^2}$の最大値と最小値を求めよ.また,それぞれの値を与える点$\mathrm{P}$の座標を求めよ.
東北学院大学 私立 東北学院大学 2016年 第4問
点$\mathrm{A}(8,\ 6)$を中心とし半径が$r$の円と円$C:x^2+y^2=4$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,次の問いに答えよ.ただし,点$\mathrm{P}$の$x$座標は点$\mathrm{Q}$の$x$座標より小さいとする.

(1)$r$の値の範囲を求めよ.
(2)直線$\mathrm{AP}$が円$C$の接線であるとき,$r$の値と点$\mathrm{P}$の座標を求めよ.
名城大学 私立 名城大学 2016年 第2問
$t$を正の実数とし,$3$点$\mathrm{A}(t,\ t,\ t)$,$\mathrm{B}(1,\ 0,\ 0)$,$\mathrm{C}(0,\ 1,\ 0)$を頂点とする三角形$\mathrm{ABC}$が,正三角形であるとする.このとき,次の各問に答えよ.

(1)$t$の値を求めよ.
(2)三角形$\mathrm{ABC}$の重心の座標を求めよ.
(3)平面$\mathrm{ABC}$上の六角形$\mathrm{ARBPCQ}$が正六角形となるような点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を求めよ.
名城大学 私立 名城大学 2016年 第4問
$f(x)=2x^3+(a-1)x^2-a+1$($a$は$a \neq 1$を満たす実数)とするとき,次の問に答えよ.

(1)$y=f(x)$のグラフは$a$の値によらず$2$定点を通ることを示し,その座標を求めよ.
(2)$f(x)$の極大値を与える$x$の値$m$を求めよ.
(3)$a$が$a \neq 1$を満たす実数全体を動く.$(2)$の$m$に対し,点$(m,\ f(m))$の軌跡を$xy$平面上に図示せよ.
東北医科薬科大学 私立 東北医科薬科大学 2016年 第3問
放物線$y=1-4x^2$上の点$\mathrm{P}(a,\ b)$と,この放物線の点$\mathrm{P}$を通る接線を$\ell$とおく.また,直線$\ell$と放物線$y=-x^2+2x+4$とで囲まれる図形の面積を$S(a)$とおく.このとき,次の問に答えなさい.

(1)$a=0$のとき,接線$\ell$と放物線$y=-x^2+2x+4$の交点の$x$座標は$x=[アイ]$,$[ウ]$である.また,$\displaystyle S(0)=\frac{[エオ]}{[カ]}$である.

(2)$0 \leqq b$となるような$a$の値の範囲は$\displaystyle \frac{[キク]}{[ケ]} \leqq a \leqq \frac{[コ]}{[サ]}$である.

(3)接線$\ell$の方程式は$y=-[シ]ax+[ス]a^2+[セ]$であり,
$\displaystyle S(a)=\frac{[ソタ]}{[チ]} \left( [ツ]a^2+[テ]a+[ト] \right)^{\frac{\mkakko{ナ}}{\mkakko{ニ}}}$となる.
また$S(a)$が最小となるのは$\displaystyle a=\frac{[ヌネ]}{[ノ]}$のときである.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$l \geqq 1$を定数とし,座標空間の点$\mathrm{A}$は平面$z=-1$上を,点$\mathrm{B}$は平面$z=1$上を,$\mathrm{OA}=\mathrm{OB}=l$をみたしつつ動くとする.ただし$\mathrm{O}$は座標空間の原点である.

(1)$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるためには$l \geqq [あ]$であることが必要十分である.また,点$\mathrm{A}$,$\mathrm{B}$から$xy$平面へ垂線を下ろし,それぞれと$xy$平面との交点を$\mathrm{A}^\prime,\ \mathrm{B}^\prime$とするとき,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$かつ$\displaystyle \cos \angle \mathrm{A}^\prime \mathrm{OB}^\prime=\frac{2}{3}$となるように点$\mathrm{A}$,$\mathrm{B}$を選ぶことができるのは$l=[い]$のときである.
(2)$l=[い]$のとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を
\[ \mathrm{A}(0,[う],-1),\quad \mathrm{B}([え],[お],1),\quad \mathrm{C}([か],[き],[く]) \]
とすると$\mathrm{OABC}$は正四面体をなす.ただし$[う],\ [え],\ [く]$はいずれも正とする.
また,正四面体$\mathrm{OABC}$を平面$y+3z=t$で切ったときの切り口は$[け]<t<[こ]$のとき四角形となる.その四角形は上底と下底の和が$[さ]$,高さが$[し]$の台形であり,その面積は$t=[す]$のとき最大値$[せ]$をとる.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.

(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
北里大学 私立 北里大学 2016年 第1問
次の文中の$[ア]$~$[ヌ]$にあてはまる最も適切な数値を答えなさい.

(1)平面上のベクトル$\overrightarrow{a}$と$\overrightarrow{b}$が
\[ |\overrightarrow{a|}=2,\quad |\overrightarrow{b|}=\sqrt{3},\quad |\overrightarrow{a|-2 \overrightarrow{b}}=2 \sqrt{2} \]
を満たすとき$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.また$|\overrightarrow{a|+t \overrightarrow{b}}$を最小にする実数$t$の値は$\displaystyle \frac{[イ]}{[ウ]}$である.

(2)$1$次不定方程式$17x+59y=1$のすべての整数解は,$n$を任意の整数として
\[ x=59n+[エ],\quad y=-17n+[オ] \]
である.
(3)$i$を虚数単位とし,$z=-1+\sqrt{3}i$とすると,
\[ z^2=[カ]+[キ] \sqrt{3}i,\quad z^3=[ク]+[ケ] \sqrt{3}i \]
である.また,$z^n$を$n$について$1$から$9$まで足し合わせると,
\[ \sum_{n=1}^9 z^n=[コ][サ] \left( [シ]+[ス] \sqrt{3}i \right) \]
となる.
(4)$\displaystyle \log_{15}900=[セ]+\frac{[ソ]}{\log_2 [タ]+\log_2 [チ]}$である.

(5)区間$[0,\ \pi]$を定義域とする$2$つの関数$f_1(x)=\cos (x+\alpha)+d$と$f_2(x)=\cos (x-\alpha)-d$を考える.
$\displaystyle \alpha=\frac{\pi}{4},\ d=\frac{1}{4}$のとき,これら$2$つの関数のグラフの交点の$x$座標は
\[ \sin x=\frac{\sqrt{[ツ]}}{[テ]} \]
を満足する.
また,$\displaystyle \alpha=\frac{\pi}{6}$のとき,$\displaystyle d=\frac{[ト]}{[ナ]}$であればこれら$2$つの関数のグラフは,$\displaystyle x=\frac{[ニ]}{[ヌ]} \pi$で接している.
立教大学 私立 立教大学 2016年 第2問
$a,\ b,\ c,\ d,\ e$を実数とし,$b>0$,$e>0$とする.座標空間内の$3$点$\mathrm{A}(6,\ 0,\ 0)$,$\mathrm{B}(a,\ b,\ 0)$,$\mathrm{C}(c,\ d,\ e)$と原点$\mathrm{O}(0,\ 0,\ 0)$で作られる三角錐$\mathrm{OABC}$において,
\[ \mathrm{AB}=\mathrm{OB},\quad \cos \angle \mathrm{OBA}=\frac{4}{5},\quad \mathrm{AC}=\mathrm{BC}=\mathrm{OC}=9 \]
であるとする.このとき,次の問いに答えよ.

(1)線分$\mathrm{OB}$の長さを求めよ.さらに点$\mathrm{B}$の座標を求めよ.
(2)三角形$\mathrm{OAB}$の外心を$\mathrm{D}$とする.線分$\mathrm{OD}$の長さを求めよ.さらに,点$\mathrm{D}$の座標を求めよ.
(3)点$\mathrm{C}$の座標を求めよ.
(4)三角錐$\mathrm{OABC}$の体積$V$を求めよ.
早稲田大学 私立 早稲田大学 2016年 第4問
正の定数$a$に対して,$f(x)=ax^3-(2a-1)x^2-(5a+1)x+6(a-1)$とする.関数$y=f(x)$のグラフは$x$軸とちょうど$2$つの共有点をもつ.これらの共有点のうち,$x$座標の値が大きい方の点の座標は$([ス],\ 0)$であり,$\displaystyle a=\frac{[セ]}{[ソ]}$である.また,$f(x)$が極小値をとるのは,$\displaystyle x=\frac{[タ]}{[チ]}$のときである.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。