タグ「座標」の検索結果

10ページ目:全2097問中91問~100問を表示)
香川大学 国立 香川大学 2016年 第5問
$a>0$とし,座標平面上の点$\mathrm{A}(a,\ 0)$から曲線$\displaystyle C:y=\frac{1}{x}$に引いた接線を$\ell$とする.このとき,次の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および直線$x=a$で囲まれた部分の面積を求めよ.
佐賀大学 国立 佐賀大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(4,\ 0)$,$\mathrm{P}(t,\ 0)$をとる.ただし,$0<t<4$とする.さらに放物線$C:y=-x^2+7x$上に$2$点$\mathrm{B}(4,\ 12)$,$\mathrm{Q}(t,\ -t^2+7t)$をとる.$\triangle \mathrm{APB}$の面積を$f(t)$とし,放物線$C$,線分$\mathrm{PQ}$,線分$\mathrm{OP}$によって囲まれた図形の面積を$g(t)$とする.このとき,次の問に答えよ.

(1)$f(t)$を$t$を用いて表せ.
(2)$g(t)$を$t$を用いて表せ.
(3)$h(t)=f(t)+g(t)$とおく.$0<t<4$における$h(t)$の最小値とそのときの$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
(4)$t<1$のとき,$\ell$と$C$が$t<s<1$を満たす点$\mathrm{U}(s,\ f(s))$で交わるような$t$の範囲を求めよ.またそのとき,線分$\mathrm{PU}$と$C$とで囲まれる部分の面積と,線分$\mathrm{UR}$と$C$と直線$x=1$とで囲まれる部分の面積が等しくなるような$t$の値を求めよ.
大分大学 国立 大分大学 2016年 第2問
自然数$n$に対して関数$y=2nx-x^2$のグラフと$x$軸で囲まれた領域(境界線を含む)$R_n$を考える.以下の問いに答えなさい.

(1)領域$R_n$に含まれる格子点($x$座標と$y$座標がともに整数である点)の数$S_n$を求めなさい.
(2)点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2n,\ 0)$,および関数$y$の頂点を結ぶ線分で囲まれた領域(境界線を含む)に含まれる格子点の数$T_n$を求めなさい.
(3)$\displaystyle \lim_{n \to \infty} \frac{T_n}{S_n}$を求めなさい.
琉球大学 国立 琉球大学 2016年 第2問
座標平面上の原点$\mathrm{O}$,$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$の$3$点を通る放物線$y=ax^2+bx+c$を$C_1$とし,原点$\mathrm{O}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$C_1$と線分$\mathrm{PQ}$で囲まれた図形の面積を求めよ.
(3)放物線$C_1$と円$C_2$で囲まれた図形のうち,放物線$C_1$の上側の部分の面積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第4問
点$\mathrm{A}(1,\ 0)$および点$\displaystyle \mathrm{P}(\sqrt{3} \cos \theta,\ \sqrt{3} \sin \theta) \left( 0<\theta<\frac{\pi}{4} \right)$がある.$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とし,$2$点$\mathrm{P}$,$\mathrm{A}$を通る直線を$\ell$,$2$点$\mathrm{O}$,$\mathrm{Q}$を通る直線を$m$とする.次に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\sqrt{3} \cos \theta>1$を示せ.
(2)直線$\ell$の方程式と直線$m$の方程式を$\theta$を用いて表せ.
(3)直線$\ell$と直線$m$の交点$\mathrm{R}$の座標を$\theta$を用いて表せ.
(4)三角形$\mathrm{PAQ}$の面積を$S$とする.$\theta$が変化するとき,$S$の最大値とそのときの$\theta$の値を求めよ.
(5)$\theta$が$(4)$で求めた値をとるとき,$2$直線$\ell,\ m$および曲線$x^2+y^2=3 (x \geqq \sqrt{3} \cos \theta)$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
以下の問いに答えよ.

(1)放物線$y=x^2-x$の頂点を$\mathrm{P}$とする.点$\mathrm{Q}$はこの放物線上の点であり,原点$\mathrm{O}(0,\ 0)$とも点$\mathrm{P}$とも異なるとする.$\angle \mathrm{OPQ}$が直角であるとき,点$\mathrm{Q}$の座標を求めよ.
(2)関数$f(x)$は以下の条件(イ),(ロ),(ハ)を満たす.そのような正の数$a$の値と$f(x)$を求めよ.

(イ)$f^\prime(x)=x^2+ax$
(ロ)$f(0)=-1$
(ハ)$f(x)$の極大値と極小値の差が$\displaystyle \frac{4}{81}$

(3)方程式$2(\log_2 x)^2-7 |\log_2 x|-4=0$を解け.
(4)$0 \leqq x \leqq 2\pi$のとき,不等式$\sin 3x+\sin 2x<\sin x$を解け.
スポンサーリンク

「座標」とは・・・

 まだこのタグの説明は執筆されていません。