タグ「平面」の検索結果

73ページ目:全1904問中721問~730問を表示)
京都薬科大学 私立 京都薬科大学 2014年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$a$を実数の定数として,放物線$y=2x^2-(a+3)x+a+1$のグラフの頂点は$([ア],\ [イ])$で,この点は$a$の値にかかわらず,放物線$y=[ウ]x^2+[エ]x-[オ]$上にある.
(2)平面上の直線$y=2x+1$と点$(0,\ 1)$において${45}^\circ$の角度で交わる直線は$2$つあり,これらの直線の方程式は,$[カ]$と$[キ]$である.
(3)$5$つの数$\sqrt[3]{4}$,$1$,$16^{\frac{1}{5}}$,$\log_43$,$\log_32$を小さいほうから順に並べると
\[ [ク]<[ケ]<[コ]<[サ]<[シ] \]
となる.
(4)方程式$7x+19y=2014$を満たす自然数の組$(x,\ y)$は$[ス]$個ある.
金沢工業大学 私立 金沢工業大学 2014年 第2問
次の$[ ]$に当てはまるものを下記の$①$~$④$のうちから一つ選び,その番号をマークせよ.ただし,同じものをくり返し選んでもよい.

$a,\ b,\ c$を定数とし,$a \neq 0$とする.条件$p,\ q,\ r,\ s,\ t$を次のように定める.
$p:$方程式$ax^2+bx+c=0$は異なる$2$つの実数解をもつ.
$q:$座標平面で関数$y=ax^2+bx+c$のグラフは$x$軸と異なる$2$点で交わる.
$r:ac<0$である.
$s:b^2-ac>0$である.
$t:(a+b+c)(a-b+c)<0$である.

このとき,$q$は$p$の$[ケ]$.$r$は$q$の$[コ]$.$s$は$p$の$[サ]$.$t$は$q$の$[シ]$.
\[ \begin{array}{ll}
① \text{必要十分条件である} & ② \text{必要条件であるが,十分条件でない} \\
③ \text{十分条件であるが,必要条件でない} & ④ \text{必要条件でも十分条件でもない}
\end{array} \]
金沢工業大学 私立 金沢工業大学 2014年 第3問
$m$を定数とする.$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$と直線$y=mx+4$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$2$点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とする.

(1)$\displaystyle \alpha+\beta=\frac{[アイ] m}{[ウ]+m^2},\ \alpha\beta=\frac{[エオ]}{[ウ]+m^2}$である.
(2)$\displaystyle |\overrightarrow{\mathrm{AB}}|=\frac{[カ] \sqrt{m^2-[キ]}}{\sqrt{[ク]+m^2}}$である.
(3)$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$のとき,$m=\pm \sqrt{[ケ]}$,$|\overrightarrow{\mathrm{AB}}|=[コ] \sqrt{[サ]}$である.
龍谷大学 私立 龍谷大学 2014年 第2問
座標平面上の定点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(2,\ 1)$,$\mathrm{C}(2,\ 2)$,$\mathrm{D}(3,\ 3)$と動点$\mathrm{P}$を考える.$\mathrm{P}$は原点$\mathrm{O}(0,\ 0)$から出発する.表の出る確率が$\displaystyle \frac{1}{3}$,裏の出る確率が$\displaystyle \frac{2}{3}$のコインを投げ,そのたびに,表が出れば$x$軸の正方向に$1$,裏が出れば$y$軸の正方向に$1$だけ進む.コインを$6$回投げるとき,次の問いに答えなさい.

(1)$\mathrm{P}$が$\mathrm{D}$に達する確率を求めなさい.
(2)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$の両方を通過して$\mathrm{D}$に達する確率を求めなさい.
(3)$\mathrm{P}$が$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の少なくとも$1$つを通過して$\mathrm{D}$に達する確率を求めなさい.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ -1)$をとる.点$\displaystyle \left( \frac{1}{2},\ 0 \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円$C$を考える.$C$上の点で,第$1$象限にある点を$\mathrm{P}$とし,$\angle \mathrm{POA}=\theta$とする.

(1)$\displaystyle \angle \mathrm{OPA}=\frac{\pi}{[ケ]}$であり,$\displaystyle \triangle \mathrm{POA}=\frac{1}{[コ]} \sin \theta \cos \theta$である.
(2)四辺形$\mathrm{OBAP}$の面積は$\displaystyle \frac{1}{[サ]}+\frac{1}{[シ]} \sin 2\theta$である.
(3)$\displaystyle \triangle \mathrm{POB}=\frac{1}{[ス]}+\frac{1}{[セ]} \cos 2\theta$である.
(4)$\triangle \mathrm{PBA}$の面積を$S$とすると,$\displaystyle S=\frac{1}{[ソ]}+\frac{\sqrt{[タ]}}{[チ]} \sin \left( 2\theta-\frac{\pi}{[ツ]} \right)$であり,$S$は$\displaystyle \theta=\frac{[テ]}{[ト]} \pi$で最大値$\displaystyle \frac{1+\sqrt{[ナ]}}{[ニ]}$をとる.
千葉工業大学 私立 千葉工業大学 2014年 第4問
$xy$平面上に放物線$\displaystyle C:y=\frac{1}{4}x^2+4$と点$\mathrm{P}(p,\ 0)$がある.ただし,$p \geqq 0$とする.$C$上の点$\displaystyle \left( p,\ \frac{1}{4}p^2+4 \right)$における$C$の接線を$\ell$とし,$\ell$に関して,$\mathrm{P}$と対称な点を$\mathrm{Q}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$p=0$のとき,$\mathrm{Q}(0,\ [ア])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{p}{[イ]}x-\frac{[ウ]}{[エ]}p^2+[オ]$である.線分$\mathrm{PQ}$の中点が$\ell$上にあることから
\[ Y=\frac{p}{[カ]}X+[キ] \cdots\cdots (*) \]
が成り立つ.
(3)$p>0$のとき,$\mathrm{Q}$が,$\mathrm{P}$を通り$\ell$と直交する直線上にあることから
\[ Y=\frac{[クケ]}{p}X+[コ] \cdots\cdots (**) \]
が成り立つ.$(*)$と$(**)$から$p$を消去することにより
\[ X^2+Y^2-[サシ]Y+[スセ]=0 \]
が成り立つことがわかる.
(4)$X$の最小値は$[ソタ]$であり,このとき$p=[チ]$である.$p$が$0$から$[チ]$まで変化するとき,線分$\mathrm{PQ}$が通過する部分の面積は$\displaystyle \frac{[ツ]}{[テ]} \pi+\frac{[トナ]}{[ニ]}$である.
名城大学 私立 名城大学 2014年 第1問
次の$[ ]$に答えを記入せよ.

(1)$2$個のさいころを振って,出た目の逆数の和が整数になる確率は$[ア]$である.また,$3$個のさいころを振って,出た目の逆数の和が$1$になる確率は$[イ]$である.
(2)座標平面で直線$y=3x$についての対称移動を$f$,原点を中心とした${60}^\circ$の回転移動を$g$とする.点$\mathrm{P}(2,\ -1)$の$f$による像を点$\mathrm{Q}$とし,点$\mathrm{Q}$の$g$による像を点$\mathrm{R}$とするとき,点$\mathrm{Q}$の$x$座標は$[ウ]$,点$\mathrm{R}$の$x$座標は$[エ]$である.
南山大学 私立 南山大学 2014年 第2問
$a>0$,$b>0$,$c>0$とする.原点を$\mathrm{O}$とする座標空間に$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$をとり,$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.

(1)$\mathrm{G}$の座標を$a,\ b,\ c$で表せ.
(2)$\mathrm{G}$を通り,$\overrightarrow{\mathrm{OG}}$と垂直な平面を$\alpha$とし,$\alpha$と$x$軸,$y$軸,$z$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$a,\ b,\ c$で表せ.
(3)$(2)$の$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$について,$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{PR}}$のなす角を$\theta$とする.$\cos \theta$を$a,\ b,\ c$で表せ.
京都産業大学 私立 京都産業大学 2014年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x^2+x-2 \leqq 0 \displaystyle \phantom{\frac{1}{[ ]}} \\
\displaystyle\frac{x-6}{7}>\frac{x-4}{5}
\end{array} \right. \]
を満たす$x$の値の範囲は$[ ]$である.
(2)座標平面上の$3$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(3,\ 3)$,$\mathrm{C}(2,\ 6)$に対して,$2$つのベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の内積は$[ ]$である.
(3)$(x+2y)^6$の展開式における$x^2y^4$の係数は$[ ]$である.
(4)$a$を実数とするとき,$x$の方程式$(\log_2 x)^2+(a+1) \log_2 x+1=0$が異なる$2$つの実数の解をもつような$a$の値の範囲は$[ ]$である.
(5)$\triangle \mathrm{OAB}$において$\mathrm{OA}=3$,$\mathrm{OB}=4$,$\angle \mathrm{AOB}={15}^\circ$のとき,$\triangle \mathrm{OAB}$の面積は$[ ]$である.
京都産業大学 私立 京都産業大学 2014年 第3問
$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{A}(2,\ 0)$,$\mathrm{B}(0,\ 2)$がある.直線$\ell$は辺$\mathrm{OB}$上の点$\mathrm{P}(0,\ t) (0 \leqq t \leqq 2)$を通り,$\triangle \mathrm{OAB}$の面積を$2$等分しているとする.直線$\ell$と$\triangle \mathrm{OAB}$の辺の$2$つの交点のうち,点$\mathrm{P}$でない方の点を$\mathrm{Q}$とし,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)$0 \leqq t \leqq 1$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(2)$(1)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(3)$1 \leqq t \leqq 2$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(4)$(3)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(5)$(2)$で求めた$x$の式を$f(x)$,$(4)$で求めた$x$の式を$g(x)$とする.$2$曲線$y=f(x)$,$y=g(x)$と直線$\displaystyle x=\frac{1}{2}$で囲まれた部分の面積を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。