タグ「平面」の検索結果

31ページ目:全1904問中301問~310問を表示)
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.関数$f(t)=-4t^3+(a+3)t$の$0 \leqq t \leqq 1$における最大値を$M(a)$とする.

(1)$M(a)$を求めよ.
(2)実数$x>0$に対し,$g(x)=M(x)^2$とおく.$xy$平面において,関数$y=g(x)$のグラフに点$(s,\ g(s))$で接する直線が原点を通るとき,実数$s>0$とその接線の傾きを求めよ.
(3)$a$が正の実数全体を動くとき,
\[ k=\frac{M(a)}{\sqrt{a}} \]
の最小値を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
四面体$\mathrm{ABCD}$がある.線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$は同一平面上にあり,四面体のどの頂点とも異なるとする.このとき下記の設問に答えよ.

(1)$\mathrm{PQ}$と$\mathrm{RS}$が平行であるとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
(2)$\mathrm{PQ}$と$\mathrm{RS}$が平行でないとき,等式
\[ \frac{\mathrm{AP}}{\mathrm{PB}} \cdot \frac{\mathrm{BQ}}{\mathrm{QC}} \cdot \frac{\mathrm{CR}}{\mathrm{RD}} \cdot \frac{\mathrm{DS}}{\mathrm{SA}}=1 \]
が成り立つことを示せ.
北海道大学 国立 北海道大学 2015年 第3問
平面において,一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.$\mathrm{O}$を通り直線$\mathrm{OA}$と垂直な直線上に$\mathrm{O}$と異なる点$\mathrm{P}$をとる.$\mathrm{O}$を通り直線$\mathrm{OB}$と垂直な直線上に$\mathrm{O}$と異なる点$\mathrm{Q}$をとる.ベクトル$\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}$は$\overrightarrow{\mathrm{AB}}$に垂直であるとする.

(1)$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OA}}$を示せ.
(2)ベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$のなす角を$\alpha$とする.ただし,$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.このときベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$のなす角が$\pi-\alpha$であることを示せ.

(3)$\displaystyle \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{OA}}|}=\frac{|\overrightarrow{\mathrm{OQ}}|}{|\overrightarrow{\mathrm{OB}}|}$を示せ.
九州大学 国立 九州大学 2015年 第3問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球がある.下の概略図のように,$y$軸の負の方向から仰角$\displaystyle \frac{\pi}{6}$で太陽光線が当たっている.この太陽光線はベクトル$(0,\ \sqrt{3},\ -1)$に平行である.球は光を通さないものとするとき,以下の問いに答えよ.
(図は省略)

(1)球の$z \geqq 0$の部分が$xy$平面上につくる影を考える.$k$を$-1<k<1$を満たす実数とするとき,$xy$平面上の直線$x=k$において,球の外で光が当たらない部分の$y$座標の範囲を$k$を用いて表せ.
(2)$xy$平面上において,球の外で光が当たらない部分の面積を求めよ.
(3)$z \geqq 0$において,球の外で光が当たらない部分の体積を求めよ.
広島大学 国立 広島大学 2015年 第2問
座標平面上の放物線
\[ C_n:y=x^2-p_nx+q_n \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を考える.ただし,$p_n,\ q_n$は
\[ p_1^2-4q_1=4,\quad p_n^2-4q_n>0 \qquad (n=2,\ 3,\ 4,\ \cdots) \]
を満たす実数とする.$C_n$と$x$軸との二つの交点を結ぶ線分の長さを$\ell_n$とする.また,$C_n$と$x$軸で囲まれた部分の面積$S_n$は
\[ \frac{S_{n+1}}{S_n}=\left( \frac{n+2}{\sqrt{n(n+1)}} \right)^3 \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$C_n$の頂点の$y$座標を$\ell_n$を用いて表せ.
(2)数列$\{\ell_n\}$の一般項を求めよ.
(3)$p_n=n \sqrt{n} (n=1,\ 2,\ 3,\ \cdots)$であるとき,$\displaystyle \lim_{n \to \infty} n \log \left( -\frac{2q_n}{n^2} \right)$を求めよ.ただし,$\log x$は$x$の自然対数である.
神戸大学 国立 神戸大学 2015年 第2問
座標平面上の楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$C$とする.$a>2$,$0<\theta<\pi$とし,$x$軸上の点$\mathrm{A}(a,\ 0)$と楕円$C$上の点$\mathrm{P}(2 \cos \theta,\ \sin \theta)$をとる.原点を$\mathrm{O}$とし,直線$\mathrm{AP}$と$y$軸との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$を通り$x$軸に平行な直線と,直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.以下の問に答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{R}$の$y$座標を$f(\theta)$とする.このとき,$0<\theta<\pi$における$f(\theta)$の最大値を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{R}$の距離の$2$乗を$g(\theta)$とする.このとき,$0<\theta<\pi$における$g(\theta)$の最小値を求めよ.
広島大学 国立 広島大学 2015年 第1問
$a,\ b,\ c$を実数とし,$a<1$とする.座標平面上の$2$曲線
\[ C_1:y=x^2-x,\quad C_2:y=x^3+bx^2+cx-a \]
を考える.$C_1$と$C_2$は,点$\mathrm{P}(1,\ 0)$と,それとは異なる点$\mathrm{Q}$を通る.また,点$\mathrm{P}$における$C_1$と$C_2$の接線の傾きは等しいものとする.点$\mathrm{P}$における$C_1$の接線を$\ell_1$,点$\mathrm{Q}$における$C_1$の接線を$\ell_2$,点$\mathrm{Q}$における$C_2$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$b,\ c$および点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\ell_1,\ \ell_2,\ \ell_3$が三角形をつくらないような$a$の値を求めよ.
(3)$\ell_1,\ \ell_2,\ \ell_3$が直角三角形をつくるような$a$の値の個数を求めよ.
九州大学 国立 九州大学 2015年 第1問
座標平面上の$2$つの放物線
\[ \begin{array}{rcl}
C_1 & : & y=x^2 \\
C_2 & : & y=-x^2+ax+b \phantom{\frac{[ ]}{2}}
\end{array} \]
を考える.ただし,$a,\ b$は実数とする.

(1)$C_1$と$C_2$が異なる$2$点で交わるための$a,\ b$に関する条件を求めよ.
以下,$a,\ b$が$(1)$の条件を満たすとし,$C_1$と$C_2$で囲まれる部分の面積が$9$であるとする.
(2)$b$を$a$を用いて表せ.
(3)$a$がすべての実数値をとって変化するとき,放物線$C_2$の頂点が描く軌跡を座標平面上に図示せよ.
横浜国立大学 国立 横浜国立大学 2015年 第1問
大小$2$つのさいころを投げ,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$a,\ b$に対し,$xy$平面上の曲線$y=x^3-ax$を$C$とし,$C$を$x$軸の正の方向に$b$だけ平行移動した曲線を$D$とする.次の問いに答えよ.

(1)$C$と$D$が異なる$2$点で交わる確率を求めよ.
(2)$C$と$D$が異なる$2$点で交わり,かつ,その$2$点を通る直線の傾きが正である確率を求めよ.
横浜国立大学 国立 横浜国立大学 2015年 第3問
実数$a$に対し,$xy$平面上の放物線$C:y=(x-a)^2-2a^2+1$を考える.次の問いに答えよ.

(1)$a$がすべての実数を動くとき,$C$が通過する領域を求め,図示せよ.
(2)$a$が$-1 \leqq a \leqq 1$の範囲を動くとき,$C$が通過する領域を求め,図示せよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。