タグ「平面」の検索結果

187ページ目:全1904問中1861問~1870問を表示)
中央大学 私立 中央大学 2010年 第3問
関数
\[ f(x)=\frac{5}{8}x^2+|x| \left( \frac{1}{2}+\frac{3}{8}x \right) \]
に対し,$xy$平面上のグラフ$C:y=f(x)$を考える.$a$を正の実数とし,$y$軸上の点$\mathrm{P}(0,\ -a^2)$から$C$に$2$本の接線$\ell_1$,$\ell_2$を引く.このとき,以下の設問に答えよ.

(1)$C$と$\ell_1$の接点を$\mathrm{S}(s,\ f(s))$とする.$s<0$のとき,$a$を用いて$s$を表せ.
(2)$C$と$\ell_2$の接点を$\mathrm{T}(t,\ f(t))$とする.$t>0$のとき,$a$を用いて$t$を表せ.
(3)$\ell_1$と$\ell_2$が直交するような$a$の値を求めよ.
関西大学 私立 関西大学 2010年 第2問
平面上の四角形$\mathrm{OABC}$について,$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \mathrm{OC}=\frac{\sqrt{7}}{3}$および$\displaystyle \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}-\frac{2}{3} \overrightarrow{\mathrm{OA}}$が成り立っているとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の$[ ]$をうめよ.

$\mathrm{CB}=[$1$]$,$\overrightarrow{a} \cdot \overrightarrow{b}=[$2$]$であり,$\angle \mathrm{AOB}$は$[$3$]$度である.
$t>0$とし,直線$\mathrm{OA}$上に点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=t \overrightarrow{\mathrm{OA}}$となるようにとる.このとき,線分$\mathrm{OB}$と線分$\mathrm{CD}$との交点を$\mathrm{P}$とおくと,$t$を用いて$\overrightarrow{\mathrm{OP}}=[$4$] \overrightarrow{b}$と書ける.
$\triangle \mathrm{OPD}$の重心$\mathrm{G}$が$\triangle \mathrm{OAB}$の内部または周上にあるような$t$の範囲は$0<t \leqq [$5$]$である.また,$\triangle \mathrm{OPD}$の外心を$\mathrm{R}$とおくと,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OD}}$と$\overrightarrow{a}$が垂直であり,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OP}}$と$\overrightarrow{b}$も垂直であることから,$\displaystyle t=\frac{1}{3}$のとき,$\overrightarrow{\mathrm{OR}}=[$7$] \overrightarrow{a}+[$8$] \overrightarrow{b}$であり,$|\overrightarrow{\mathrm{OR}}|=[$9$]$である.
関西大学 私立 関西大学 2010年 第4問
次の$[ ]$をうめよ.

(1)$x^2-3x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\alpha^2+\beta^2=[$1$]$であり,さらに$\displaystyle \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=[$2$]$である.
(2)$xy$平面上の$3$点$(1,\ 2)$,$(2,\ 4)$,$(3,\ 1)$にあと$1$点$\mathrm{A}$を加えることにより,それらが平行四辺形の$4$つの頂点になるとする.このとき,$\mathrm{A}$の$y$座標をすべて求めると$[$3$]$である.
(3)$n$は自然数とする.$(x+y+1)^n$を展開したとき,$xy$の項の係数は$90$であった.このときの$n$の値は$[$4$]$である.
(4)$-1<x$において,関数$f(x)$は
\[ f(x)=\lim_{n \to \infty} \frac{x^n}{x^{n+2}+x^n+1} \]
で定義されている.$f(x)$を求めると,ある値$\alpha$で$f(x)$が連続にならないことがわかる.このとき$f(\alpha)$と等しい値をとるもうひとつの$x$は$[$5$]$である.
(5)$i=\sqrt{-1}$とする.複素数$\alpha=1+\sqrt{3}i$に対して,$\displaystyle \frac{(\alpha+2)^6}{\alpha^3}$の値は$[$6$]$である.
(6)$0<x \leqq \pi$とする.方程式
\[ \sin 3x+\sin x=\cos x \]
の解$x$をすべて求めると$[$7$]$である.
東京女子大学 私立 東京女子大学 2010年 第5問
座標平面上に点$\mathrm{P}$と$\mathrm{Q}$があり,原点$\mathrm{O}$に対して$\overrightarrow{\mathrm{OQ}}=2 \overrightarrow{\mathrm{OP}}$という関係が成り立っている.$\mathrm{P}$が,点$(1,\ 1)$を中心とする半径$1$の円周$C$上をうごくとき,

(1)点$\mathrm{Q}$の描く図形$D$を図示せよ.
(2)$C$と$D$の交点の$x$座標をすべて求めよ.
早稲田大学 私立 早稲田大学 2010年 第5問
四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{BC}$を$4:1$に内分する点を$\mathrm{R}$とする.この四面体を$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面で切り,この平面が線分$\mathrm{AC}$と交わる点を$\mathrm{S}$とするとき,線分の長さの比$\mathrm{AS}:\mathrm{SC}$を求めることを考えよう.\\
点$\mathrm{S}$は$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面上にあるから,定数$s,\ t,\ u$を用いて,
\[ \overrightarrow{\mathrm{OS}} = s \, \overrightarrow{\mathrm{OP}} + t \, \overrightarrow{\mathrm{OQ}} +u \, \overrightarrow{\mathrm{OR}} \quad (s+t+u=1) \]
と書くことができる.ここで,$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[ス]\overrightarrow{\mathrm{OB}}+[セ]\overrightarrow{\mathrm{OC}}}{[ソ]}$であるから,$\overrightarrow{\mathrm{OS}}$は$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$それぞれの定数倍の和として表すことができる.そこで,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$の係数をそれぞれ定数$s^{\prime},\ t^{\prime},\ u^{\prime}$とおくことにより
\[ \overrightarrow{\mathrm{OS}} = s^{\prime}\overrightarrow{\mathrm{OA}} + t^{\prime}\overrightarrow{\mathrm{OB}} +u^{\prime}\overrightarrow{\mathrm{OC}} \quad (18s^{\prime}+16t^{\prime}+11u^{\prime}=[タ]) \]
と書くことができる.ところが,点$\mathrm{S}$は線分$\mathrm{AC}$上にあることから,$s^{\prime},\ t^{\prime}\ u^{\prime}$を求めることができ,$\mathrm{AS}:\mathrm{SC}=[チ]:[ツ]$であることがわかる.
ただし,$[ソ]$,$[チ]$,$[ツ]$はできる限り小さい自然数で答えること.
広島工業大学 私立 広島工業大学 2010年 第1問
次の$[ ]$に適する答を記入せよ.

(1)等式$xy+3x-y-3=5$を満たす自然数$x,\ y$は$x=[ ]$,$y=[ ]$である.
(2)$\mathrm{O}$を原点とする座標平面に$2$点$\mathrm{A}(\cos \theta,\ \sin \theta)$と$\mathrm{B}(\cos 2\theta,\ \sin 2\theta) (0 \leqq \theta \leqq \pi)$がある.このとき,ベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$が垂直になるのは$\theta=[ ]$のときであり,$|\overrightarrow{\mathrm{AB}}|=1$となるのは$\theta=[ ]$のときである.
(3)$a,\ b$を実数の定数とする.方程式$x^3+ax+b=0$の$1$つの解が$1+\sqrt{2}i$であるとき,$a=[ ]$である.また,この方程式の実数解は$[ ]$である.ただし,$i$は虚数単位とする.
首都大学東京 公立 首都大学東京 2010年 第2問
原点をOとする座標平面上のベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$は$|\overrightarrow{\mathrm{OA}}|=\sqrt{17},\ |\overrightarrow{\mathrm{OB}}|=\sqrt{10}$を満たし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$が$\displaystyle \cos \theta =- \frac{13}{\sqrt{170}}$を満たしている.ベクトル$\overrightarrow{u},\ \overrightarrow{v}$を$\displaystyle \overrightarrow{u} = \frac{\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}}{2},\ \overrightarrow{v}=\frac{\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}}{2}$で定める.このとき,以下の問いに答えなさい.

(1)長さ$|\overrightarrow{u}|,\ |\overrightarrow{v}|$と内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求めなさい.
(2)実数$t$に対して$\overrightarrow{\mathrm{OP}} = t \overrightarrow{u}+(1-t)\overrightarrow{v}$とおく.長さ$|\overrightarrow{\mathrm{OP}}|$を最小にする$t$の値を求めなさい.また,そのときの長さ$|\overrightarrow{\mathrm{OP}}|$を求めなさい.
首都大学東京 公立 首都大学東京 2010年 第3問
同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}} = \overrightarrow{a},\ \overrightarrow{\mathrm{OB}} = \overrightarrow{b},\ \overrightarrow{\mathrm{OC}} = \overrightarrow{c}$とおく.点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を含む平面上に点$\mathrm{D}$をとる.このとき,以下の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OD}} = x \overrightarrow{a} +y \overrightarrow{b} +z \overrightarrow{c}$と表すとき,実数$x,\ y,\ z$が満たすべき条件を求めなさい.
(2)$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は四角形$\mathrm{ABCD}$をなし,次の条件

$\overrightarrow{a} \perp \overrightarrow{b},\ \overrightarrow{b} \perp \overrightarrow{c},\ \overrightarrow{c} \perp \overrightarrow{a},$
$\displaystyle |\overrightarrow{a}| = |\overrightarrow{b}|= |\overrightarrow{c}|= 1,\quad |\overrightarrow{\mathrm{OD}}| = \sqrt{\frac{17}{2}}$

を満たすとする.その辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とし,四角形$\mathrm{PQRS}$が長方形をなすとする.ただし,四角形$\mathrm{PQRS}$は四角形$\mathrm{ABCD}$に含まれるものとする.このとき,$x,\ y,\ z$の値を求めなさい.
大阪市立大学 公立 大阪市立大学 2010年 第3問
$a,\ b$を正の実数とし,座標平面上の放物線$C : y = ax^2 +b$を考える.$t,\ s$は正の実数とし,点P$(t,\ at^2 +b)$における$C$の接線を$\ell_P$,点Q$(s,\ as^2 +b)$における$C$の接線を$\ell_Q$で表す.$\ell_P$は原点を通っているとする.次の問いに答えよ.

(1)$\ell_P$の傾きが1未満となるための必要十分条件を,$a$と$b$を用いて表せ.
(2)$\ell_P$の傾きは1未満とし,$\ell_P$と$x$軸がなす鋭角を$\theta$と表す.Qを$\ell_Q$と$x$軸のなす鋭角が$2\theta$になるようにとるとき,$\ell_Q$の傾きを$a$と$b$を用いて表せ.
(3)$a,\ b$が$\displaystyle a+b = \frac{1}{2}$をみたすとき,$\ell_P$の傾きは1未満であることを示せ.
(4)$a,\ b$は$\displaystyle a+b = \frac{1}{2}$をみたすものとし,Qを(2)のようにとる.$\ell_Q$の傾きが最大になるような$a,\ b$を求めよ.
大阪市立大学 公立 大阪市立大学 2010年 第4問
$a,\ b$は$a < b$をみたす実数とする.$f(x),\ g(x)$は閉区間$[ \; a,\ b \; ]$で定義された連続関数で,$g(x) \leqq f(x)$をみたすとする.座標平面上,不等式$a \leqq x \leqq b,\ g(x) \leqq y \leqq f(x)$をみたす点$(x,\ y)$全体からなる図形をAとする.Aの面積$S$が正のとき,Aの重心の$y$座標は,
\[ \frac{1}{S} \int_a^b \frac{\{f(x)\}^2-\{g(x)\}^2}{2} \, dx \]
で与えられる.この事実を用いて,次の問いに答えよ.

(1)$r$は$0 < r < 1$をみたす実数とする.不等式$r^2 \leqq x^2 + y^2 \leqq 1,\ y \geqq 0$をみたす点$(x,\ y)$全体からなる図形をBとおく.Bの重心の$y$座標$Y(r)$を$r$を用いて表せ.
(2)$t$は正の実数とする.不等式$-1 \leqq x \leqq 1,\ \sqrt{1-x^2} -t \leqq y \leqq \sqrt{1-x^2}$をみたす点$(x,\ y)$全体からなる図形をCとおく.Cの重心の$y$座標$Z(t)$を$t$を用いて表せ.
(3)(1)で得られた$Y(r)$と(2)で得られた$Z(t)$について,$\displaystyle \lim_{r \to 1-0}Y(r)$と$\displaystyle \lim_{t \to +0}Z(t)$の大小を比較せよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。