タグ「平面」の検索結果

131ページ目:全1904問中1301問~1310問を表示)
立教大学 私立 立教大学 2012年 第2問
$2$次関数$F(x)$について,次の問いに答えよ.

(1)$2$次方程式$F(x)=0$は$2$つの解$2,\ -3$を持ち,$F(5)=12$を満たす.このとき,$F(x)$を求めよ.
(2)(1)で求めた$F(x)$が関数$f(x)$を用いて
\[ F(x)=2 \int_a^x f(t) \, dt \]
と表されるとき,関数$f(x)$と定数$a$の値をすべて求めよ.
(3)座標平面において,曲線$y=F(x)$と曲線$y=f(x)$とで囲まれる領域の面積を求めよ.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~シに当てはまる数または式を記入せよ.

(1)方程式$x^3-4x^2+ax+b=0$の$1$つの解が$1-2i$であるとき,実数解は$[ア]$であり,$a=[イ]$,$b=[ウ]$である.ただし,定数$a,\ b$は実数とし,$i$は虚数単位とする.
(2)サイコロを続けて$2$回振り,最初に出た目が$a$,次に出た目が$b$ならば座標平面上に直線$\ell:y=ax-b$を描く.この試行において,直線$\ell$が放物線$y=x^2$と相異なる$2$点で交わる確率は$[エ]$である.
(3)不等式$x^2+y^2+6x+4y-12 \leqq 0$の表す領域の面積は$[オ]$である.
(4)$\displaystyle x=\frac{1}{\sqrt{2}-1},\ y=\frac{1}{\sqrt{2}+1}$であるとき,$x^3+y^3-2xy^2=[カ]$である.
(5)$0 \leqq \theta < 2\pi$のとき,$\sqrt{3}\cos \theta-\sin \theta=r \sin (\theta +\alpha)$の形に変形すると,$r=[キ]$,$\alpha=[ク]$である.ただし,$0 \leqq \alpha < 2\pi$とする.
(6)実数からなる数列$\{a_n\}$が$a_{n+1}^3=2a_n^2,\ a_1=4$を満たすとき,$\log_2a_n=[ケ]$である.
(7)図のように東西$6$本,南北$6$本の道路で区画された場所がある.南西の端の地点$\mathrm{A}$から北東の端の地点$\mathrm{B}$へ行く最短ルートは$[コ]$通りある.
(図は省略)
(8)$3$次関数$f(x)=x^3-3a^2x+b (a>0)$が極大値$13$と極小値$-19$を持つならば$a=[サ]$,$b=[シ]$である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に2点A$(-1,\ 3)$,B$(5,\ 15)$と直線$\ell$が与えられており,2点A,Bは直線$\ell$に関して対称な位置にある.直線$\ell$が$y$軸と交わる点をCとし,線分ABの中点をMとする.線分MA上に,点Mと異なる点Pをとる.このとき次の問(1)~(4)に答えよ.

(1)点Mの座標と直線ABの方程式を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)点Pの$x$座標を$t$とする.$\angle \text{PCM}=\theta$とおくとき,$\cos \theta$を$t$を用いて表せ.
(4)直線$\ell$に関して,点Pと対称な点をQとする.三角形PCQが正三角形となるとき,$t$の値を求めよ.
立教大学 私立 立教大学 2012年 第2問
関数$f(x)=x^3+x^2-16x+3$が定める座標平面上の曲線を$C$とする.この曲線が$y$軸と交わる点を$\mathrm{P}$とし,$f(x)$は$x=a$において極小値をとるとする.$x=a$に対応する曲線上の点を$\mathrm{Q}(a,\ f(a))$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$\mathrm{Q}$の座標を求めよ.
(2)点$\mathrm{R}$を$\mathrm{R}(0,\ f(a))$で定める.$\triangle \mathrm{PQR}$を$y$軸を中心にして回転させて得られる円錐$\mathrm{M}$とそれに内接する円柱$\mathrm{N}$を考える.円柱$\mathrm{N}$の底面は,円柱$\mathrm{M}$の底面に含まれており,半径が$r$であるとき,この円柱$\mathrm{N}$の体積$V$を$r$の式で表せ.
(3)円柱$\mathrm{N}$の体積$V$が最大となるような$r$とそのときの体積を求めよ.
立教大学 私立 立教大学 2012年 第3問
座標平面上に円$x^2+y^2=4$と円上の点$\mathrm{P}(1,\ -\sqrt{3})$,$\mathrm{Q}(-1,\ -\sqrt{3})$が与えられている.$0<\theta<\pi$のとき,円上の点を$\mathrm{R}(2\cos \theta,\ 2\sin \theta)$とし,$\angle \mathrm{QPR}=\alpha,\ \angle \mathrm{PQR}=\beta$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$(2,\ 0)$を$\mathrm{A}$,点$(-2,\ 0)$を$\mathrm{B}$とするとき,弧$\mathrm{PAR}$に対する中心角と弧$\mathrm{QBR}$に対する中心角を$\theta$を用いて表せ.
(2)$\alpha,\ \beta$を$\theta$を用いて表せ.
(3)$2 \sin \alpha=\sqrt{3} \sin \beta$となるときの点$\mathrm{R}$の座標を求めよ.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~キに当てはまる数または式を記入せよ.

(1)$0 \leqq \theta < \pi$の範囲で,$\cos^2 \theta+2\sqrt{3}\sin \theta \cos \theta-\sin^2 \theta$の最小値は[ア]であり,そのときの$\theta$の値は[イ]である.
(2)$\displaystyle \frac{a^x-a^{-x}}{2}=1$のとき,$x=\log_a y$と表せば,$y=[ウ]$である.ただし,$a>0$,$a \neq 1$とする.
(3)さいころを$3$回投げ,出た目を順に,百の位,十の位,一の位にして$3$桁の自然数をつくる.このとき,この自然数が$6$で割り切れ,さらに桁の並びを逆にしても$6$で割り切れる確率は[エ]である.
(4)最高次の係数が$1$の整式$P(x)$で,条件$P(2)=0,\ P(0)=1,\ P(1)=2$をみたすもののうち,最も次数の低いものは$P(x)=[オ]$である.
(5)座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(6,\ 2)$を頂点とする三角形$\mathrm{OAB}$の外心の座標は$([カ],\ [キ])$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数とする.$xy$平面上に$2$点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\displaystyle \mathrm{Q}(\frac{3}{2}\cos \theta,\ \frac{3}{2}\sin \theta)$がある.点$\mathrm{R}$を$\mathrm{PR}:\mathrm{QR}=1:2$を満たす点とする.

(1)点$\mathrm{R}$が直線$y \cos \theta-x \sin \theta=0$上にあるとき,それらの点の座標は
\[ \left( \frac{[ク]}{[ケ]} \cos \theta,\ \frac{[コ]}{[サ]} \sin \theta \right),\quad \left( \frac{[シ]}{[ス]} \cos \theta,\ \frac{[セ]}{[ソ]} \sin \theta \right) \]
である.ただし,$\displaystyle \frac{[ク]}{[ケ]}>\frac{[シ]}{[ス]}$とする.
(2)$\mathrm{R}$の軌跡は方程式
\[ \left( x-\frac{[タ]}{[チ]} \cos \theta \right)^2+\left( y-\frac{[ツ]}{[テ]} \sin \theta \right)^2=\frac{[ト]}{[ナ]} \]
が表す円$D(\theta)$である.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を動くとき,(2)で求めた$D(\theta)$が通過する部分の面積は$\displaystyle \frac{[ニ]}{[ヌネ]} \pi$である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に点$\mathrm{P}(s,\ t)$がある.ただし,$t<0$である.点$\mathrm{P}$から放物線$\displaystyle C:y=\frac{1}{2}x^2$に引いた$2$本の異なる接線の接点を$\mathrm{A}$,$\mathrm{B}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とするとき,$\alpha+\beta$を$s$を用いて表せ.ただし,$\alpha < \beta$とする.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線$\ell$の式を$s$と$t$を用いて表せ.
(3)直線$\ell$と放物線$C$で囲まれる部分の面積を$S$とするとき,$S$を$s$と$t$を用いて表せ.
(4)点$\mathrm{P}$が点$(0,\ -3)$を中心とする半径$2$の円周上にあるとき,$S$の最大値,および最大値を与える点$\mathrm{P}$の座標をすべて求めよ.
北海学園大学 私立 北海学園大学 2012年 第2問
座標平面上に,$5$本の直線$x=k (k=0,\ 1,\ 2,\ 3,\ 4)$と,これらと垂直な$10$本の直線$y=l (l=0,\ 1,\ 2,\ \cdots,\ 9)$がある.これらの直線によってできる四角形のうちで,次の個数を求めよ.

(1)四角形
(2)正方形
(3)面積が$4$以上の四角形
北海学園大学 私立 北海学園大学 2012年 第3問
座標平面上に,$5$本の直線$x=k (k=0,\ 1,\ 2,\ 3,\ 4)$と,これらと垂直な$10$本の直線$y=l (l=0,\ 1,\ 2,\ \cdots,\ 9)$がある.これらの直線によってできる四角形のうちで,次の個数を求めよ.

(1)四角形
(2)正方形
(3)面積が$4$以上の四角形
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。