タグ「平面」の検索結果

127ページ目:全1904問中1261問~1270問を表示)
愛媛大学 国立 愛媛大学 2012年 第4問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
山梨大学 国立 山梨大学 2012年 第3問
円$C:x^2+y^2=1$と点$\mathrm{A}(x_0,\ 0)$があり,$0<x_0<1$とする.原点$\mathrm{O}$と円$C$上の点$\mathrm{B}$を通る直線$\ell_1$と線分$\mathrm{AB}$の垂直二等分線$\ell_2$の交点を$\mathrm{P}$とする.点$\mathrm{B}$が円$C$上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めよ.また,その方程式が表す図形を下の座標平面上に図示せよ.
(図は省略)
東京海洋大学 国立 東京海洋大学 2012年 第4問
座標平面上の放物線$y=x^2$に点$\mathrm{P}(a,\ b)$(ただし,$b<a^2$)から異なる$2$本の接線を引き,放物線との接点をそれぞれ$\mathrm{Q}(q,\ q^2)$,$\mathrm{R}(r,\ r^2)$(ただし,$q<r$)とする.

(1)$2$本の接線の方程式を$a,\ b$を用いて表せ.
(2)$\angle \mathrm{QPR}=45^\circ$を満たす点$\mathrm{P}$の軌跡を求めて図示せよ.
東京海洋大学 国立 東京海洋大学 2012年 第2問
$a$を正の定数とする.放物線$C:y=(1-x)(x+a)$と$C$上の動点$\mathrm{P}(t,\ (1-t)(t+a))$について,次の問に答えよ.ただし,$0<t<1$とする.

(1)$x$軸に関して$\mathrm{P}$と対称な点を$\mathrm{Q}$,$xy$平面の原点を$\mathrm{O}$とし,放物線$C$と$y$軸および$2$つの線分$\mathrm{PQ}$,$\mathrm{OQ}$とで囲まれた図形の面積を$S$とするとき,$S$を$t$と$a$で表せ.
(2)$S$を最大にする$t$が$\displaystyle \frac{3}{4}<t<\frac{4}{5}$の範囲に存在することを示せ.
鳥取大学 国立 鳥取大学 2012年 第3問
点$\mathrm{A}(1,\ 2,\ 4)$を通り,ベクトル$\overrightarrow{n}=(-3,\ 1,\ 2)$に垂直な平面を$\alpha$とする.平面$\alpha$に関して同じ側に$2$点$\mathrm{P}(-2,\ 1,\ 7)$,$\mathrm{Q}(1,\ 3,\ 7)$がある.次の問いに答えよ.

(1)平面$\alpha$に関して点$\mathrm{P}$と対称な点$\mathrm{R}$の座標を求めよ.
(2)平面$\alpha$上の点で,$\mathrm{PS}+\mathrm{QS}$を最小にする点$\mathrm{S}$の座標とそのときの最小値を求めよ.
愛媛大学 国立 愛媛大学 2012年 第2問
次の問いに答えよ.

(1)$a,\ b$を実数で,$a \neq 0$とする.$\displaystyle c=\frac{2+3ai}{a-bi}$が純虚数のとき,$b$と$c$の値を求めよ.
(2)定積分$\displaystyle \int_0^{2\pi} |x \cos \displaystyle\frac{x|{3}} \, dx$を求めよ.
(3)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
(4)座標平面上の曲線
\[ x=2 \cos \theta+1,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
で囲まれた図形を$x$軸の回りに$1$回転して得られる回転体の体積を求めよ.
山口大学 国立 山口大学 2012年 第2問
点$\mathrm{O}$を原点とする空間内に$2$点$\mathrm{P}(1,\ 1,\ 2)$,$\mathrm{Q}(-1,\ a,\ b)$があり,$\mathrm{OP}=\mathrm{OQ}$かつ$\angle \mathrm{POQ}={60}^\circ$が成り立っている.ただし,$a<0$とする.このとき,次の問いに答えなさい.

(1)$a,\ b$の値を求めなさい.
(2)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を含む平面上において,$\mathrm{Q}$とは異なる点$\mathrm{R}(x,\ y,\ z)$が$\mathrm{OP}=\mathrm{OR}$かつ$\angle \mathrm{POR}={60}^\circ$をみたすように$x,\ y,\ z$の値を定めなさい.
茨城大学 国立 茨城大学 2012年 第3問
座標平面上に点$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$がある.点$\mathrm{P}$が単位円$C:x^2+y^2=1$上を動くとき,次の各問に答えよ.

(1)$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.
(2)$\mathrm{PA}^2+\mathrm{PB}^2$が最小となる点$\mathrm{P}$の座標を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。