タグ「平面」の検索結果

126ページ目:全1904問中1251問~1260問を表示)
山口大学 国立 山口大学 2012年 第1問
$xy$平面上に点$\mathrm{A}(-1,\ 0)$と,原点を中心とする半径1の円$C$を考える.$C$上の点$\mathrm{P}$を通り$x$軸に垂直な直線を$\ell$とし,$\ell$と$x$軸の交点を$\mathrm{Q}$とする.このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の$x$座標を$a$とするとき,$f(a)=\mathrm{AQ}+\mathrm{PQ}$を$a$を用いて表しなさい.
(2)(1)で求めた関数$f(a)$の$-1 \leqq a \leqq 1$における最大値を求めなさい.
山口大学 国立 山口大学 2012年 第2問
点$\mathrm{O}$を原点とする空間内に2点$\mathrm{P}(1,\ 1,\ 2)$,$\mathrm{Q}(-1,\ a,\ b)$があり,$\mathrm{OP}=\mathrm{OQ}$かつ$\angle \mathrm{POQ}=60^\circ$が成り立っている.ただし,$a<0$とする.このとき,次の問いに答えなさい.

(1)$a,\ b$の値を求めなさい.
(2)3点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を含む平面上において,$\mathrm{Q}$とは異なる点$\mathrm{R}(x,\ y,\ z)$が$\mathrm{OP}=\mathrm{OR}$かつ$\angle \mathrm{POR}=60^\circ$をみたすように$x,\ y,\ z$の値を定めなさい.
山口大学 国立 山口大学 2012年 第4問
$xy$平面において,直線$y=8$の上に点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$が,直線$y=0$の上に点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{Q}_3$,$\mathrm{Q}_4$,$\mathrm{Q}_5$が,それぞれ$x$座標の小さい順に並んでいる.これらを$y=8$上の点と$y=0$上の点ひとつずつからなる5つの組に分け,それぞれの組の2点を結んでできる5本の線分を考える.下図はその一例である.このとき,次の問いに答えなさい.
(図は省略)

(1)3本の線分$\mathrm{P}_i \mathrm{Q}_n$,$\mathrm{P}_j \mathrm{Q}_m$,$\mathrm{P}_k \mathrm{Q}_l$が1点$\mathrm{R}$で交わるとき,$\displaystyle \frac{\mathrm{P}_i \mathrm{P}_j \cdot \mathrm{Q}_l \mathrm{Q}_m}{\mathrm{P}_j \mathrm{P}_k \cdot \mathrm{Q}_m \mathrm{Q}_n}$を求めなさい.ただし,$i<j<k$かつ$l<m<n$であるとする.
(2)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,どのような結び方をしても3本の線分が1点で交わらないことを(1)を用いて背理法で示しなさい.
(3)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,交点の数の合計がちょうど2つになるような結び方は何通りあるかを答えなさい.
浜松医科大学 国立 浜松医科大学 2012年 第2問
$24$時間診療業務を休みなく行う病院において,$40$日間で$1$万個使用される医療材料$\mathrm{A}$について考える.$\mathrm{A}$の使用頻度は常に一定であり,$1$日の時間帯や曜日による変動は全くないものとする.さて,病院における在庫管理では,「品切れ」が起きないこと,「コスト」をできるだけ低くすること,この$2$つが肝要である.医療材料$\mathrm{A}$の保管費は,その保管期間に比例し,$1$個につき$10$日間で$1$円である.また,納入業者に$\mathrm{A}$を注文すれば,注文量の多少に関わらず,品物が届いた時点で$200$円の事務費がかかる.なお,担当者は$\mathrm{A}$の在庫量$y$の時間的推移を把握しており,品切れになる直前という最適のタイミングで,注文した量が届くものとする.われわれは,保管費と事務費の和$S$を最小にするような注文の仕方を求める.以下の問いに答えよ.

(1)$\mathrm{A}$の在庫は最初$1$万個あったとする.そして注文する量は毎回一定として,$x$で表す.このとき,時間$t$による在庫量$y$の変化を表すグラフを,横軸を時間の$t$軸とする座標平面上に図示せよ.(図示する際には,適当な$x$の値を自ら設定すること.)
以下,$1$回目の注文によって品物の届く時点以降の$y$の変化について考察する.
(2)周期的な$y$の変動に留意して,平均在庫量を求めよ.
(3)長期にわたる保管費,事務費の総額をそれぞれ見積もり,保管費と事務費の和$S$の「$1$日当たりの平均コスト」を求めよ.さらに,この$1$日当たりの平均コストを最小にするような$x$の値を求めよ.
防衛大学校 国立 防衛大学校 2012年 第2問
平面上のベクトル$\overrightarrow{a_n}$,$\overrightarrow{b_n} \ (n=1,\ 2,\ 3,\ \cdots)$を,$\overrightarrow{a_1}=(4,\ 0)$,$\overrightarrow{b_1}=(0,\ 4)$と関係式
\[ \overrightarrow{a_{n+1}}=\frac{3 \overrightarrow{a_n}+\overrightarrow{b_n}}{4},\quad \overrightarrow{b_{n+1}}=\frac{\overrightarrow{a_n}-3 \overrightarrow{b_n}}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.さらに原点を$\mathrm{O}$とし,$\overrightarrow{a_n}=\overrightarrow{\mathrm{OA}_n}$,$\overrightarrow{b_n}=\overrightarrow{\mathrm{OB}_n}$とする.このとき,次の問に答えよ.

(1)$\overrightarrow{a_2},\ \overrightarrow{b_2}$を求めよ.
(2)$\overrightarrow{a_{n+2}}$を$\overrightarrow{a_n}$で表せ.
(3)$\triangle \mathrm{OA}_n \mathrm{B}_n$の面積を$S_n$とするとき,$\displaystyle \frac{S_{n+1}}{S_n}$の値を求めよ.
(4)$S_1+S_2+\cdots +S_n>21$をみたす最小の自然数$n$を求めよ.ただし,$\log_{10}2=0.3010$とする.
浜松医科大学 国立 浜松医科大学 2012年 第3問
$n$は自然数を表すとして,以下の問いに答えよ.

(1)平面を次の条件を満たす$n$個の直線によって分割する.
【どの直線も他のすべての直線と交わり,どの$3$つの直線も$1$点で交わらない.】
このような$n$個の直線によって作られる領域の個数を$L(n)$とすると,$L(1)=2,\ L(2)=4$は容易にわかる.次の問いに答えよ.

(i) $L(3),\ L(4),\ L(5)$をそれぞれ求めよ.
(ii) $L(n)$の漸化式を求めよ.
(iii) $L(n)$を求めよ.

(2)平面を次の条件を満たす$n$個の円によって分割する.
【どの円も他のすべての円と$2$点で交わり,どの$3$つの円も$1$点で交わらない.】
このような$n$個の円によって作られる領域の個数を$D(n)$とすると,$D(1)=2$は容易にわかる.次の問いに答えよ.

(i) $D(2),\ D(3),\ D(4)$をそれぞれ求めよ.
(ii) $D(n)$の漸化式を求めよ.
(iii) $D(n)$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第1問
座標平面上の点を,原点のまわりに角$\theta$だけ回転移動させる一次変換を表す$2$行$2$列の行列を$A$とする.以下の問いに答えよ.

(1)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって変換された点を点$\mathrm{P}_1$とする.$2$点$\mathrm{P}_0$,$\mathrm{P}_1$の間の長さを求めよ.
(2)$A^n=E$となる条件を示せ.ただし,$n$は$2$以上の整数,$0 \leqq \theta \leqq \pi$,$E$は単位行列とする.
(3)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって$l$回変換された点を点$\mathrm{P}_l$とする.点$\mathrm{P}_0$が$A$によって$n$回変換されると,原点の周りを$1$周して元の点$\mathrm{P}_0$に戻るとする.$n$個の点$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{n-1}$で囲まれた$n$角形の面積$S_n$を求めよ.また,$\displaystyle \lim_{x \to 0}\frac{\sin x}{x}=1$を用いて,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)座標平面上の点を,原点からの方向を変えずに距離を$k$倍する一次変換を表す$2$行$2$列の行列を$B$とする.座標平面上の点$\mathrm{Q}_{i-1}$が一次変換$AB$によって点$\mathrm{Q}_i$に移るとする.点$\mathrm{Q}_0$を$(c_0,\ d_0)$とするとき,$2$点$\mathrm{Q}_{i-1}$,$\mathrm{Q}_i$の間の長さ$m_i$を$k,\ \theta,\ c_0,\ d_0$を用いて表せ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第2問
$xy$平面上の点とベクトルに関する以下の問いに答えよ.

(1)図のように$x$軸の正の部分と$30^\circ$の角をなす直線上に$n$個の点($\mathrm{A}_1,\ \mathrm{A}_2,\ \cdots, \mathrm{A}_n$)を以下の規則で配置する.このときの$\mathrm{A}_n$の座標を$n$を用いて表せ.また$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad \overrightarrow{\mathrm{A}_1 \mathrm{A}_2}=\frac{1}{2}\overrightarrow{\mathrm{OA}_1},\quad \overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}=\frac{1}{2}\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}} \]
(図は省略)
(2)今度は$n$個の点を第一象限内に図のように反時計回りに配置する.各線分は隣り合う線分と直角をなす.このとき$n \to \infty$の場合における$\mathrm{A}_n$の座標を求めよ.ただし,各線分の長さの関係は以下の規則に従うものとする.
\[ \text{(規則)} \quad |\overrightarrow{\mathrm{OA}_1}|=2,\quad |\overrightarrow{\mathrm{A}_1 \mathrm{A}_2}|=\frac{1}{2}|\overrightarrow{\mathrm{OA}_1}|,\quad |\overrightarrow{\mathrm{A}_{n-1} \mathrm{A}_n}|=\frac{1}{2}|\overrightarrow{\mathrm{A}_{n-2} \mathrm{A}_{n-1}}| \]
(図は省略)
防衛大学校 国立 防衛大学校 2012年 第3問
座標平面上の$3$点$(0,\ 0)$,$(6,\ 0)$,$(0,\ 6)$を頂点とする三角形と$4$点$(0,\ t)$,$(0,\ t-4)$,$(4,\ t-4)$,$(4,\ t)$を頂点とする正方形の共通部分の面積を$S(t)$とする.このとき,次の問に答えよ.ただし,$2 \leqq t \leqq 6$とする.

(1)$S(2)$と$S(6)$の値を求めよ.
(2)$S(t)$を最大にする$t$の値と,$S(t)$の最大値$M$を求めよ.
(3)$2 \leqq t \leqq 5$のとき,$S(t)=S(t+1)$をみたす$t$の値を求めよ.
山梨大学 国立 山梨大学 2012年 第1問
次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$について,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=3$である.このとき,$\overrightarrow{p}=3 \overrightarrow{a}-\overrightarrow{b}$の大きさ$|\overrightarrow{p}|$を求めよ.
(2)条件$\left\{ \begin{array}{l}
1 \leqq x-2y \leqq 3 \\
0 \leqq x+y \leqq 1
\end{array} \right.$の表す領域$D$を図示せよ.
(3)$0 \leqq \theta<2\pi$のとき,不等式$3 \sin \theta-1<\cos 2\theta$を満たす$\theta$の値の範囲を求めよ.
(4)平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-1,\ -1)$がある.点$\mathrm{P}$が曲線$y=x^3$の$0<x<1$の部分を動くとき,$\triangle \mathrm{ABP}$の面積の最大値を求めよ.
スポンサーリンク

「平面」とは・・・

 まだこのタグの説明は執筆されていません。