タグ「平行四辺形」の検索結果

2ページ目:全61問中11問~20問を表示)
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
会津大学 公立 会津大学 2016年 第5問
平面上に平行四辺形$\mathrm{ABCD}$がある.辺$\mathrm{AB}$の中点を$\mathrm{E}$とし,辺$\mathrm{BC}$,辺$\mathrm{CD}$,辺$\mathrm{DA}$それぞれを$1:2$に内分する点を順に$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.線分$\mathrm{EG}$と線分$\mathrm{FH}$の交点を$\mathrm{I}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,以下の問いに答えよ.

(1)$\mathrm{EI}:\mathrm{IG}=t:(1-t)$とおくとき,$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$,$\overrightarrow{d}$,$t$を用いて表せ.
(2)$\mathrm{HI}:\mathrm{IF}=u:(1-u)$とおくとき,$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$,$\overrightarrow{d}$,$u$を用いて表せ.
(3)$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$,$\overrightarrow{d}$を用いて表せ.
北九州市立大学 公立 北九州市立大学 2016年 第2問
座標平面上の原点$\mathrm{O}$と$2$次関数$f(x)=-x^2+ax$を考える.ただし,$a$は正の定数である.以下の問題に答えよ.

(1)$y_1=-x^2+x$,$y_2=-x^2+2x$とする.$\displaystyle \frac{y_2}{y_1}>0$となる$x$の値の範囲を求めよ.また,次の式を満たす$x$の値を求めよ.
\[ \log_2 \left( \frac{y_2}{y_1} \right)=2 \]
(2)積分$\displaystyle \int_0^1 |f(x)| \, dx$の値を$a$を用いて表せ.また,この値が最小となるときの$a$の値を求めよ.
(3)$\displaystyle a=\frac{5}{4}$とする.関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$C$上の$2$点を$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(p+1,\ f(p+1))$とし,点$\mathrm{P}$,$\mathrm{Q}$から$x$軸へ下ろした各々の垂線を$\mathrm{PP}^\prime$,$\mathrm{QQ}^\prime$とする.ただし,$p$は$\displaystyle 0<p<\frac{1}{4}$または$\displaystyle \frac{1}{4}<p<1$を満たす.点$\mathrm{P}$,$\mathrm{P}^\prime$,$\mathrm{Q}$,$\mathrm{Q}^\prime$を結ぶ図形が平行四辺形となるとき,$p$の値を求めよ.
愛媛大学 国立 愛媛大学 2015年 第2問
$t$を実数とする.座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{C}(-1,\ 6,\ -2)$,$\mathrm{D}(t,\ -2,\ 4)$がある.図のような平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$において,点$\mathrm{P}$が平行四辺形$\mathrm{DEFG}$の周および内部を動くとき,$\triangle \mathrm{OCP}$の面積$S$の最小値を$m$とする.また,平行四辺形$\mathrm{DEFG}$を含む平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に下ろした垂線と平面$\alpha$との交点を$\mathrm{Q}$とする.
(図は省略)

(1)平行四辺形$\mathrm{OABC}$を含む平面に垂直な単位ベクトル$\overrightarrow{u}$で,その$z$成分が正となるものを求めよ.
(2)線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{Q}$が平行四辺形$\mathrm{DEFG}$の周または内部にあるとき,$t$のとり得る値の範囲を求めよ.
(4)$t$が$(3)$で求めた範囲にあるとき,$m$の値および$S=m$となる点$\mathrm{P}$の座標をすべて求めよ.
愛媛大学 国立 愛媛大学 2015年 第1問
$t$を実数とする.座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{C}(-1,\ 6,\ -2)$,$\mathrm{D}(t,\ -2,\ 4)$がある.図のような平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$において,点$\mathrm{P}$が平行四辺形$\mathrm{DEFG}$の周および内部を動くとき,$\triangle \mathrm{OCP}$の面積$S$の最小値を$m$とする.また,平行四辺形$\mathrm{DEFG}$を含む平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に下ろした垂線と平面$\alpha$との交点を$\mathrm{Q}$とする.
(図は省略)

(1)平行四辺形$\mathrm{OABC}$を含む平面に垂直な単位ベクトル$\overrightarrow{u}$で,その$z$成分が正となるものを求めよ.
(2)線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{Q}$が平行四辺形$\mathrm{DEFG}$の周または内部にあるとき,$t$のとり得る値の範囲を求めよ.
(4)$t$が$(3)$で求めた範囲にあるとき,$m$の値および$S=m$となる点$\mathrm{P}$の座標をすべて求めよ.
滋賀大学 国立 滋賀大学 2015年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円に内接する正六角形のうち,点$\mathrm{A}_1(1,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_1$から反時計回りに,$\mathrm{B}_1$,$\mathrm{C}_1$,$\mathrm{D}_1$,$\mathrm{E}_1$,$\mathrm{F}_1$とする.同様に,$2$以上の自然数$n$に対して,$\mathrm{O}$を中心とする半径$n$の円に内接する正六角形のうち,点$\mathrm{A}_n(n,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_n$から反時計回りに,$\mathrm{B}_n$,$\mathrm{C}_n$,$\mathrm{D}_n$,$\mathrm{E}_n$,$\mathrm{F}_n$とする.$\overrightarrow{\mathrm{OA}_1}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}_1}=\overrightarrow{b}$とするとき,次の問いに答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{OC}_1}$,$\overrightarrow{\mathrm{B}_3 \mathrm{C}_7}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$s,\ t$を実数として,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{a}+t \overrightarrow{b}$と表される点$\mathrm{P}$が,正六角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n \mathrm{E}_n \mathrm{F}_n$の辺$\mathrm{A}_n \mathrm{F}_n$上にあるための必要十分条件を$s,\ t,\ n$を用いて表せ.ただし,$n$は自然数とし,頂点$\mathrm{A}_n$,$\mathrm{F}_n$は辺$\mathrm{A}_n \mathrm{F}_n$上の点とする.
(3)点$\mathrm{B}_3$,$\mathrm{C}_7$,$\mathrm{E}_2$と辺$\mathrm{A}_n \mathrm{F}_n$上の点$\mathrm{P}$がある平行四辺形の頂点となるような自然数$n$を求め,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
中央大学 私立 中央大学 2015年 第3問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{BC}$を$m:(1-m)$に内分する点を$\mathrm{P}$,辺$\mathrm{CD}$を$n:(1-n)$に内分する点を$\mathrm{Q}$とする.ただし,$0<m<1$,$0<n<1$である.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{AQ}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)線分$\mathrm{PQ}$と対角線$\mathrm{AC}$の交点を$\mathrm{R}$とするとき,$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
西南学院大学 私立 西南学院大学 2015年 第4問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{E}$,辺$\mathrm{AD}$を$3:2$に内分する点を$\mathrm{F}$,辺$\mathrm{AD}$の中点を$\mathrm{G}$とする.直線$\mathrm{BG}$と直線$\mathrm{EF}$の交点を$\mathrm{P}$とすると,
\[ \overrightarrow{\mathrm{AP}}=\frac{[ネ]}{[ノ]} \overrightarrow{\mathrm{AB}}+\frac{[ハ]}{[ヒ]} \overrightarrow{\mathrm{AD}} \]
である.

また,直線$\mathrm{AP}$と直線$\mathrm{DC}$の交点を$\mathrm{Q}$とすると,
\[ \mathrm{DQ}:\mathrm{QC}=[フ]:[ヘ] \]
である.
崇城大学 私立 崇城大学 2015年 第1問
次の各問に答えよ.

(1)不等式$|x^2-x-6| \geqq x+2$を解け.
(2)方程式$2 \log_3 x-2 \log_x 3+3=0$を解け.
(3)$\mathrm{AB}=1$,$\mathrm{AD}=2$,$4 \mathrm{AC}=3 \mathrm{BD}$の平行四辺形$\mathrm{ABCD}$がある.対角線$\mathrm{AC}$,$\mathrm{BD}$の長さを求めよ.
スポンサーリンク

「平行四辺形」とは・・・

 まだこのタグの説明は執筆されていません。