タグ「小さい」の検索結果

7ページ目:全99問中61問~70問を表示)
会津大学 公立 会津大学 2013年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_{-2}^1 x \sqrt{x+3} \, dx=[イ]$

(ii) $\displaystyle \int_0^\pi e^x \sin x \, dx=[ロ]$

(2)$2$つの放物線$y=4x^2$と$y=(x-1)^2$で囲まれた部分の面積は$[ハ]$である.
(3)$\sqrt{-2} \, \sqrt{-3}=[ニ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ホ]$である.
(5)$0 \leqq x \leqq \pi$において$\displaystyle \sin 2x-\frac{1}{2}=\sin x-\cos x$のとき,$x=[ヘ]$である.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を重複なく用いて作られる$5$桁の整数を小さい順に並べる.初めて$20000$以上になる整数は$[ト]$で,それは$[チ]$番目である.
防衛医科大学校 国立 防衛医科大学校 2012年 第1問
以下の問に答えよ.

(1)以下の条件 (ア),(イ) を満たす正の整数は,小さい順に並べると,等差数列になる.この数列の初項と公差を求めよ.

\mon[(ア)] $13$で割ると余りが$2$となる.
\mon[(イ)] $11$で割ると商が奇数,余りが$3$となる.

(2)正六角形$\mathrm{ABCDEF}$の辺$\mathrm{CD}$の中点を$\mathrm{M}$,$\mathrm{CE}$と$\mathrm{AM}$の交点を$\mathrm{N}$とする.このとき,$\triangle \mathrm{NEA}$の面積は$\triangle \mathrm{NCM}$の面積の何倍となるか.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}$を求めよ.
琉球大学 国立 琉球大学 2012年 第1問
次の問に答えよ.

(1)次の数列の一般項を求めよ.
\[ 1,\ 5,\ 11,\ 19,\ 29,\ 41,\ \cdots \]
(2)$|\overrightarrow{a}|=3,\ |\overrightarrow{b}|=2$で,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が${60}^\circ$であるとき,$|\overrightarrow{a}-3\overrightarrow{b}|$を求めよ.
(3)次の数を小さい順に並べよ.
\[ \log_3 5,\ \frac{1}{2}+\log_9 8,\ \log_9 26 \]
(4)次の定積分を求めよ.
\[ \int_0^3 |x^2-x-2| \, dx \]
茨城大学 国立 茨城大学 2012年 第4問
奇数の列$1,\ 3,\ 5,\ \cdots$を次のように群に分ける.
\[ \begin{array}{ccccccccc}
1 & \bigg| & 3,\ 5 & \bigg| & 7,\ 9,\ 11,\ 13 & \bigg| & 15,\ 17,\ 19,\ 21,\ 23,\ 25,\ 27,\ 29 & \bigg| & \cdots \\
第1群 & & 第2群 & & 第3群 & & 第4群 & &
\end{array} \]
ここで,一般に第$n$群は$2^{n-1}$個の項からなるものとする.以下の各問に答えよ.

(1)第$7$群の小さい方から$10$番目の項を求めよ.
(2)$555$は第何群の小さい方から何番目の項であるかを求めよ.
(3)第$n$群に含まれるすべての項の和を求めよ.
山口大学 国立 山口大学 2012年 第4問
$xy$平面において,直線$y=8$の上に点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$が,直線$y=0$の上に点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{Q}_3$,$\mathrm{Q}_4$,$\mathrm{Q}_5$が,それぞれ$x$座標の小さい順に並んでいる.これらを$y=8$上の点と$y=0$上の点ひとつずつからなる5つの組に分け,それぞれの組の2点を結んでできる5本の線分を考える.下図はその一例である.このとき,次の問いに答えなさい.
(図は省略)

(1)3本の線分$\mathrm{P}_i \mathrm{Q}_n$,$\mathrm{P}_j \mathrm{Q}_m$,$\mathrm{P}_k \mathrm{Q}_l$が1点$\mathrm{R}$で交わるとき,$\displaystyle \frac{\mathrm{P}_i \mathrm{P}_j \cdot \mathrm{Q}_l \mathrm{Q}_m}{\mathrm{P}_j \mathrm{P}_k \cdot \mathrm{Q}_m \mathrm{Q}_n}$を求めなさい.ただし,$i<j<k$かつ$l<m<n$であるとする.
(2)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,どのような結び方をしても3本の線分が1点で交わらないことを(1)を用いて背理法で示しなさい.
(3)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,交点の数の合計がちょうど2つになるような結び方は何通りあるかを答えなさい.
明治大学 私立 明治大学 2012年 第1問
空欄$[ ]$に当てはまるものを入れよ.

(1)$5$個の数字$0$,$1$,$2$,$3$,$4$を並べて$5$桁の整数を作る.小さい順にこれらの整数を並べたとき,$57$番目の整数は$\fbox{\footnotesize \phantom{a}アイウエオ\phantom{a}}$である.また,偶数である整数は$[カキ]$個あり,$4$の倍数である整数は$[クケ]$個ある.
(2)次の連立方程式
\[ \left\{ \begin{array}{l}
\log_xy+2 \log_y x=3 \\
\log_x(y^2+xy)=2
\end{array} \right. \]
の解は$\displaystyle x=\frac{-[コ]+\sqrt{[サ]}}{[シ]}$,$\displaystyle y=\frac{[ス]-\sqrt{[セ]}}{[ソ]}$である.
(3)自然数$1,\ 2,\ \cdots,\ n$の中から異なる二つの数を選んで積を作る.このような積全ての和を$S_n$とおく.ただし,$S_1=0$とする.$S_n$と$S_{n-1}$の間には漸化式
\[ S_n=S_{n-1}+n \cdot \frac{[タ]}{[チ]} \]
が成り立つ.これを使って,$S_n$を求めると
\[ S_n=\frac{1}{[ツテ]} \cdot n(n+1)([ト]) \]
となる.
明治大学 私立 明治大学 2012年 第2問
$f(x)=x^3-48x,\ g(x)=9x+k$($k$は定数)がある.以下の問に答えなさい.

(1)$y=f(x)$と$y=g(x)$のグラフが$3$つの異なる交点を持つ必要十分条件は$|k|<[ケ][コ]\sqrt{[サ][シ]}$である.
(2)$y=f(x)$は,$x=a$のとき,極大値$b$をとる.また,$g(a)=c$とする.
$\log_{10}b-7\log_{10}c+7=0$が成立するのは,$k=[ス][セ]$のときである.このとき,$y=f(x)$と$y=g(x)$のグラフは,$3$つの異なる交点をもち,それらの$x$座標の値は,小さい順に並べると$-[ソ],\ -[タ],\ [チ]$となる.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$(x-2y)^8$の展開式における$x^5y^3$の係数は[ア]である.
(2)$\displaystyle \int_0^2 (x^2-ax+2)\, dx=0$の等式を満たす定数$a$の値は[イ]である.
(3)$1$から$200$までの整数で,$3$および$7$のいずれでも割りきれない数の個数は[ウ]個である.
(4)方程式$5x+3y+z=15$を満たす自然数$x,\ y,\ z$の組の個数は[エ]個である.
(5)原点$\mathrm{O}$から出発して数直線上を動く点$\mathrm{P}$がある.点$\mathrm{P}$は,サイコロを振って偶数の目が出るとその目の数に$+3$をかけた数だけ移動し,奇数の目が出るとその目の数に$-2$をかけた数だけ移動する.このサイコロを$1$回振るときの点$\mathrm{P}$の数直線上の位置の期待値は[オ]である.
(6)$a=\log_2 5,\ b=\log_2 9$とおく.$\log_4 150$を$a,\ b$を用いて表すと[カ]である.
(7)複素数$z$が$\displaystyle z=\frac{a}{1-3i}+\frac{bi}{1+3i}$で与えられたとき,$z=4i$となるような実数$a,\ b$を求めると,$a=[キ],\ b=[ク]$である.ただし,$i$は虚数単位とする.
(8)$\mathrm{O}$を原点とする座標平面上に長さが等しいベクトル$\overrightarrow{\mathrm{OP}}=(2,\ 6)$と$\overrightarrow{\mathrm{OQ}}$がある.$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角が$\displaystyle \frac{\pi}{3}$であるとき,点$\mathrm{Q}$の$x$座標は[ケ]である.ただし,点$\mathrm{Q}$の$x$座標は$2$より小さいとする.
北海学園大学 私立 北海学園大学 2012年 第5問
初項が$4$,公差が$8$の等差数列を,初項から順に,$2n$個の項が第$n$群に含まれるように分けていく.

$4,\ 12 \ | \ 20,\ 28,\ 36,\ 44 \ | \ 52,\ 60,\ 68,\ 76,\ 84,\ 92 \ | \ \cdots$
{\small 第$1$群} \qquad {\small 第$2$群} \qquad\qquad\qquad {\small 第$3$群}

たとえば,$60$はこの数列の第$3$群の小さい方から$2$番目の項である.ただし,縦線$|$は群の区切りを表し,$n=1,\ 2,\ 3,\ \cdots$である.

(1)第$n$群の最初の項と最後の項を,それぞれ$n$を用いて表せ.
(2)第$n$群の項の総和$S_n$を$n$を用いて表せ.また,$\displaystyle \frac{S_n}{n} \leqq 2012$を満たす最大の$n$を求めよ.
(3)$2012$は第何群の小さい方から何番目の項であるか答えよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
スポンサーリンク

「小さい」とは・・・

 まだこのタグの説明は執筆されていません。