タグ「導関数」の検索結果

7ページ目:全552問中61問~70問を表示)
京都薬科大学 私立 京都薬科大学 2016年 第2問
次の$[ ]$にあてはまる数または式を記入せよ.

$3$次関数$y=f(x)=x^2(x-3)$で与えられる曲線を$C$とする.

(1)関数$y=f(x)$は,$x=[ア]$のとき極大値$[イ]$をとる.また,$x=[ウ]$のとき極小値$[エ]$をとる.
(2)点$(1,\ -2)$における曲線$C$の接線$\ell$の方程式は$y=[オ]$である.
(3)$(1)$の$[ア]$から$[エ]$で表される$2$点$([ア],\ [イ])$,$([ウ],\ [エ])$が$2$次関数$y=x^2+px+q$で与えられる放物線$C^\prime$上にあるとき,$p=[カ]$,$q=[キ]$である.
(4)$(2)$で求めた接線$\ell$と$(3)$で求めた放物線$C^\prime$で囲まれた部分の面積は$[ク]$である.
名城大学 私立 名城大学 2016年 第1問
次の$[ア]$~$[エ]$に数を入れよ.

(1)$2$つのさいころを投げ,出た目が両方とも奇数である事象を$A$,出た目の和が$4$の倍数である事象を$B$とする.このとき,$A$または$B$が起こる確率は$[ア]$であり,$B$が起きたときの$A$が起こる条件付き確率は$[イ]$である.
(2)$p$を定数とする.$x$の$1$次式$f(x)$が,
\[ xf(x+1)=p \int_1^x (x+t)f^\prime(t) \, dt+1 \]
を満たしているとき,$p=[ウ]$である.また,$\displaystyle \int_0^2 |f(x)| \, dx$の値は$[エ]$である.
京都薬科大学 私立 京都薬科大学 2016年 第3問
次の$[ ]$にあてはまる式を記入せよ.

空間の異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$に対して,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.線分$\mathrm{AB}$を$k:l$に内分する点を$\mathrm{C}$とおくと
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{a}+[イ] \overrightarrow{b} \]
と表される.また,線分$\mathrm{AB}$を$m:n (m>n)$に外分する点を$\mathrm{D}$とおくと
\[ \overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{a}+[エ] \overrightarrow{b} \]
と表される.さらに,$pm-qn \neq 0$をみたす正の数$p,\ q$について,$\overrightarrow{\mathrm{OA}^\prime}=p \overrightarrow{a}$,$\overrightarrow{\mathrm{OB}^\prime}=q \overrightarrow{b}$をみたす$2$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$をとり,直線$\mathrm{OC}$,$\mathrm{OD}$がそれぞれ直線$\mathrm{A}^\prime \mathrm{B}^\prime$と交わる点を$\mathrm{C}^\prime$,$\mathrm{D}^\prime$とおくと$\overrightarrow{\mathrm{OC}^\prime}$,$\overrightarrow{\mathrm{OD}^\prime}$はそれぞれ
\[ \overrightarrow{\mathrm{OC}^\prime}=[オ] \overrightarrow{a}+[カ] \overrightarrow{b},\quad \overrightarrow{\mathrm{OD}^\prime}=[キ] \overrightarrow{a}+[ク] \overrightarrow{b} \]
と表される.よって,$\mathrm{C}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[ケ]:[コ]$に内分する点で,$\mathrm{D}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[サ]:[シ]$に外分する点である.
ここで,点$\mathrm{C}$が線分$\mathrm{AB}$を内分する比の値$\displaystyle \frac{k}{l}$と,点$\mathrm{D}$が線分$\mathrm{AB}$を外分する比の値$\displaystyle \frac{m}{n}$について,これら$2$つの比の商を
\[ c(\mathrm{A},\ \mathrm{B},\ \mathrm{C},\ \mathrm{D})=\frac{\displaystyle\frac{k}{l}}{\displaystyle\frac{m}{n}}=\frac{kn}{lm} \]
とおくとき,点$\mathrm{C}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を内分する比の値と点$\mathrm{D}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を外分する比の商$c(\mathrm{A}^\prime,\ \mathrm{B}^\prime,\ \mathrm{C}^\prime,\ \mathrm{D}^\prime)$は,$k,\ l,\ m,\ n$を用いると$[ス]$と表せる.
自治医科大学 私立 自治医科大学 2016年 第22問
関数$f(x)=ax^3+bx^2+cx+d (a \neq 0)$と関数$g(x)=px^3+qx^2+rx+s (p \neq 0)$について考える($a,\ b,\ c,\ d,\ p,\ q,\ r,\ s$は実数).

$f(x)+3g(x)=-x^2$,$f^\prime(x)+g^\prime(x)=2x^2-4$,$g(0)=1$が全て成立しているとき,$|2aq|$の値を求めよ.
同志社大学 私立 同志社大学 2016年 第2問
$n$を正整数とし,$e$を自然対数の底とするとき,次の問いに答えよ.

(1)$a,\ b$を定数として,次の関数$f(x) (x>0)$の導関数$f^\prime(x)$を求めよ.
\[ f(x)=x^{n+1} \{a \cos (\pi \log x)+b \sin (\pi \log x) \} \]
(2)次の定積分の値をそれぞれ求めよ.
\[ I_n=\int_1^e x^n \cos (\pi \log x) \, dx,\quad J_n=\int_1^e x^n \sin (\pi \log x) \, dx \]
(3)次の極限値をそれぞれ求めよ.
\[ \lim_{n \to \infty} \frac{I_{n+1}}{I_n},\quad \lim_{n \to \infty} \frac{J_{n+1}}{J_n},\quad \lim_{n \to \infty} \frac{J_n}{I_n} \]
同志社大学 私立 同志社大学 2016年 第4問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{a_n}{2}+\frac{6}{\sqrt{a_n}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\displaystyle f(x)=\frac{x}{2}+\frac{6}{\sqrt{x}} (x>0)$として,次の問いに答えよ.

(1)閉区間$4 \leqq x \leqq 9$において,$f(x)$の最大値と最小値,導関数$f^\prime(x)$の最大値と最小値をそれぞれ求めよ.
(2)$4<a_n<9$を数学的帰納法を用いて示せ.
(3)$c=f(c)$を満たす正の実数$c$を求めよ.
(4)上の$(3)$で決定した$c$に対して,$\displaystyle 0<c-a_{n+1}<\frac{c-a_n}{2} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(5)極限値$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
明治大学 私立 明治大学 2016年 第1問
次の$[ ]$に適切な数を入れよ.

(1)座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 1)$,$\mathrm{B}(7,\ -1)$に対して,
\[ \sin \angle \mathrm{AOB}=\frac{\sqrt{[ア]}}{[イ]} \]
である.
(2)開発中のある薬品を製造するために,$3$種類の全く別の方式$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が考案された.また,各々の方式で,失敗せず薬品が製造できる確率は,それぞれ,$90 \, \%$,$70 \, \%$,$50 \, \%$である.これらの$3$種類の方式で独立にそれぞれ$1$回ずつ薬品を製造するとき,少なくとも$1$つの方式で失敗せず薬品が製造できる確率は,$[ウ][エ].[オ] \%$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,
\[ S_n=5a_n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で表されるとき,初項は$\displaystyle a_1=\frac{[カ]}{[キ]}$であり,一般項は$\displaystyle a_n=\frac{[ク]^{n-1}}{[ケ]^n}$である.

また,$a_{2016}$の整数部分は$[コ][サ][シ]$桁の数である.ただし,$\log_{10}2=0.30103$とする.
(4)$a,\ b,\ c$を定数とし,$x$の関数$f(x)=ax^2+bx+c$が$f(-1)=1$,$f(2)=31$を満たす.さらに$x$の関数$\displaystyle g(x)=\int_0^x (t-1)f^\prime(t) \, dt$が$x=-2$,$x=1$で極値をとるとする.このとき,$a=[ス]$,$b=[セ]$,$c=[ソ]$であり,$g(x)$の極大値は$\displaystyle \frac{[タ][チ]}{[ツ]}$である.
東邦大学 私立 東邦大学 2016年 第1問
$e$を自然対数の底とし,関数$f(x)$を$f(x)=8 \log_e \sqrt{6+\sqrt{9+x^3}}$と定める.このとき,$\displaystyle f^\prime(3)=\frac{[ア]}{[イ]}$である.
大阪工業大学 私立 大阪工業大学 2016年 第4問
関数$f(x)=x+\sqrt{4-x^2} (-2 \leqq x \leqq 2)$について,次の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)$f^\prime(-\sqrt{2})$の値を求めよ.また,$f^\prime(x)=0$を解け.
(3)$f(x)$の増減を調べ,$y=f(x)$のグラフをかけ.ただし,凹凸は調べなくてもよい.
(4)$4-x^2=t$とおき,置換積分法を用いて不定積分$\displaystyle \int x \sqrt{4-x^2} \, dx$を求めよ.
(5)曲線$y=f(x)$,$x$軸および直線$x=2$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第3問
$a$を正の定数,$e$を自然対数の底として,$\displaystyle f(x)=\int_0^a |xe^x-te^t| \, dt (0 \leqq x \leqq a)$とする.以下の$[ ]$にあてはまる適切な数,または式を記入しなさい.また,$(2)$に答えなさい.

(1)$f(0)=[ ]$であり,$f(a)=[ ]$である.
(2)$f(x)$を$a$と$x$を用いた式で表せ(途中の計算式も合わせて記載せよ).
(3)$f^\prime(x)=0$のとき,$x=[ ]$である.
(4)$f(x)$の最小値は$[ ]$,最大値は$[ ]$である.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。