タグ「導関数」の検索結果

16ページ目:全552問中151問~160問を表示)
北里大学 私立 北里大学 2015年 第3問
実数全体を定義域とする関数$f(x)$は奇関数で微分可能であるとする.さらに,$f^\prime(x)$も微分可能で$f^\prime(0)=0$を満たし,$x>0$の範囲で$f^{\prime\prime}(x)>0$であるとする.$y=f(x)$のグラフを$C_1$,$C_1$を$x$軸方向に$a$,$y$軸方向に$f(a)$だけ平行移動した曲線を$C_2$とする.ただし,$a$は正の定数とする.

(1)$f(0)$の値を求めよ.
(2)$f^\prime(x)$は偶関数であることを示せ.
(3)$C_1$と$C_2$の共有点の個数が$2$個であることを示し,その$2$点の$x$座標を求めよ.
(4)$C_1$と$C_2$で囲まれる図形の面積を$S(a)$とする.$a$が$0<a \leqq 3$の範囲を動くとき,$S(a)$を最大にする$a$の値を求めよ.
駒澤大学 私立 駒澤大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)円$x^2+y^2=5$と直線$y=x+k$が共有点をもつとき,定数$k$の範囲は,
\[ -\sqrt{[ア][イ]} \leqq k \leqq \sqrt{[ア][イ]} \]
である.
(2)関数$f(x)=x^3-3x^2-72x+18$の導関数は
\[ f^\prime(x)=[ウ]x^{\mkakko{エ}}-[オ]x-[カ][キ] \]
となる.また,関数$f(x)$は$x=[ク][ケ]$のとき極大値$[コ][サ][シ]$をとり,$x=[ス]$のとき極小値$\kakkofour{セ}{ソ}{タ}{チ}$をとる.
(3)平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(1,\ 3)$がある.このとき,


$|\overrightarrow{\mathrm{OA}}|=\sqrt{[ツ]}$,$|\overrightarrow{\mathrm{OB}}|=\sqrt{[テ][ト]}$,

$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[ナ]$,$\angle \mathrm{AOB}={[ニ][ヌ]}^\circ$


となる.また,$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{[ネ]}{[ノ]}$である.
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)関数$f(x)=3^x$の導関数は$f^\prime(x)=[ア]$であり,$\displaystyle \int_0^2 f(x) \, dx=[イ]$である.したがって,座標平面内において,点$(1,\ 3)$における曲線$C:y=f(x)$の接線$\ell$の方程式は$y=[ウ]$であり,法線$m$の方程式は$y=[エ]$である.さらに,曲線$C$,接線$\ell$,$y$軸と直線$x=2$で囲まれた部分の面積は$[オ]$であり,法線$m$と$x$軸の交点の座標は$([カ],\ 0)$である.
(2)$1$から$9$までの番号札$9$枚を入れた箱がある.その箱から番号札を$1$枚ずつ$2$回取り出して,その数を順に$x,\ y$とする.ただし,$1$度取り出した札はもとに戻さないとする.$\displaystyle \frac{y}{x}$が整数になる確率は$[キ]$であり,$\displaystyle \frac{y}{x} \leqq \frac{1}{2}$となる確率は$[ク]$であり,$\displaystyle \frac{y}{x} \geqq 3$となる確率は$[ケ]$である.また,$\displaystyle \frac{1}{2}<\frac{y}{x}<3$となる確率は$[コ]$である.
獨協医科大学 私立 獨協医科大学 2015年 第5問
$x>-1$で定義された関数$f(x)$は,等式
\[ (x+1)f(x)-\int_0^x f(t) \, dt=\log (x+1)+x-1 \]
を満たしている.

(1)このとき$f(0)=[アイ]$であり,さらに
\[ f^\prime(x)=\frac{x+[ウ]}{(x+[エ])^{\mkakko{オ}}} \]
である.
(2)これをもとに$f(x)$を求めると$f(x)=[カ]-[キ]$である.ただし,$[カ]$,$[キ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \log x \quad \nagamaruni \log (x+1) \quad \nagamarusan x \log (x+1) \quad \nagamarushi \frac{1}{x} \quad \nagamarugo \frac{1}{x+1} \quad \nagamaruroku \frac{x}{x+1} \]
(3)$a>0$とする.関数$g(x)=\log x$について,区間$[a,\ a+1]$で平均値の定理を用いると,$g(a+1)-g(a)=[ク]$となる実数の定数$c$が区間$[ケ]$に存在する.これを用いると自然数$m$に対する$f(e^m)$と$m$の大小は$f(e^m) [コ] m$となることがわかる.ただし,$[ク]$,$[ケ]$には,次の選択肢$\mathrm{I}$の$\nagamaruichi$~$\nagamarushichi$の中から,$[コ]$には,選択肢$\mathrm{II}$の$\nagamaruichi$~$\nagamarusan$の中から最も適切なものをそれぞれ一つずつ選ぶこと.

選択肢$\mathrm{I}$
$\displaystyle \nagamaruichi c \qquad \nagamaruni c+1 \qquad \nagamarusan \frac{1}{c} \qquad \nagamarushi \frac{1}{c+1} \qquad \nagamarugo \log c$
$\nagamaruroku [a,\ a+1] \qquad \nagamarushichi (a,\ a+1)$
選択肢$\mathrm{II}$
$\displaystyle \nagamaruichi < \qquad \nagamaruni > \qquad \nagamarusan =$

(4)さらに
\[ \int_0^{e^x-1} f(t) \, dt=(x-[サ])(e^x-[シ]) \]
となるので,自然数$n$に対して$\displaystyle p(n)=e^{\frac{2}{3n}}-1$とおくと
\[ \lim_{n \to \infty} n \int_0^{p(n)} f(t) \, dt=\frac{[スセ]}{[ソ]} \]
である.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)数列$\{a_n\}$は$a_1=1$,および$n=2,\ 3,\ 4,\ \cdots$に対して
\[ 5^{n-1} \times a_1+5^{n-2} \times a_2+\cdots +5 \times a_{n-1}+a_n=0 \]
をみたす.このとき$a_n (n=2,\ 3,\ 4,\ \cdots)$を求めよ.
(2)$n$を自然数とし,$f(x)=x(x-1)(x-2) \cdots (x-n)$とおく.このとき$f(x)$の$x=n$における微分係数$f^\prime(n)$は$n!$に等しいことを示せ.
神戸薬科大学 私立 神戸薬科大学 2015年 第1問
次の問いに答えよ.

(1)次の極限値を求めると,$\displaystyle \lim_{x \to 2} \frac{x^3-8}{x-2}=[ア]$であり,

$\displaystyle \lim_{h \to 0} \frac{(2x+h)^3-(2x)^3}{h}=[イ]$である.
(2)$r$の関数$\displaystyle V=\frac{4}{3}\pi (r+2)^2$の導関数を求めると,$\displaystyle \frac{dV}{dr}=[ウ]$である.ただし$\pi$は円周率である.
神奈川大学 私立 神奈川大学 2015年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)不等式$|3x-5|<2x+1$を満たす$x$の値の範囲は$[$(\mathrm{a])$}$である.
(2)$t>0$とする.$2$つのベクトル$\overrightarrow{a}=(t+3,\ t-1)$と$\overrightarrow{b}=(-1,\ t)$が垂直であるとき,$t=[$(\mathrm{b])$}$である.
(3)白い玉が$3$個,赤い玉が$2$個入っている袋がある.袋から玉を$1$つ取り出し色を確かめ袋に戻す操作を$3$回行う.このとき,$2$回以上白い玉が出る確率は$[$(\mathrm{c])$}$である.

(4)$\displaystyle \lim_{h \to 0} \frac{e^{2h+2}-e^2}{h}=[$(\mathrm{d])$}$である.

(5)$8$つの数の集まり$\{-2,\ -1,\ 0,\ 1,\ 2,\ 3,\ 4,\ 5\}$を$2$組に分け,それぞれの組に属する数の和を考える.たとえば,
$\{-1,\ 0,\ 2,\ 4,\ 5\} \text{と} \{-2,\ 1,\ 3\}$
という組み分けについては,$10$と$2$である.このとき,
「どんな組み分けについても,少なくとも一方の和は$a$以上である」
という主張が成立するような数$a$のうち最大のものは$[$(\mathrm{e])$}$である.

(6)$\displaystyle \int_1^x \log t \, dt=[$(\mathrm{f])$}$であるので,$\displaystyle f(x)=\int_1^x (x-1) \log t \, dt$のとき,$f^\prime(x)=[$(\mathrm{g])$}$である.
九州産業大学 私立 九州産業大学 2015年 第5問
$\displaystyle 0<x \leqq \frac{1}{2}\pi$のとき,関数$f(x)=\{1+\log (\sin x)\} \cos x$,曲線$L:y=f(x)$について考える.

(1)$f(x)=0$のとき$\sin x$の値は$[ア]$と$[イ]$である.
(2)関数$f(x)$の導関数$f^\prime(x)=[ウ]$である.
(3)不定積分$\displaystyle \int f(x) \, dx=[エ]+C$である.ここで$C$は積分定数とする.
(4)曲線$L$と$x$軸で囲まれた部分の面積は$[オ]$である.
九州産業大学 私立 九州産業大学 2015年 第3問
$3$次関数$f(x)$は$x=-1$と$x=-5$で極値をとり,$f(0)=14$,$f(1)=64$とする.

(1)$f(x)=[ア]x^3+[イウ]x^2+[エオ]x+[カキ]$であり,
$f^\prime(x)=[ク]x^2+[ケコ]x+[サシ]$である.
(2)$f(x)$の極大値は$[スセ]$であり,極小値は$[ソ]$である.
(3)方程式$f(x)=0$の異なる実数解の個数は$[タ]$個である.
(4)$f^\prime(x)=g(x)$とおく.曲線$y=g(x)$と$x$軸とで囲まれる図形$A$の面積は$[チツ]$である.図形$A$が直線$x=a$によって$2$つに分割され,左側と右側の部分の面積の比が$5:27$であるならば,$a$の値は$[テト]$である.
東京都市大学 私立 東京都市大学 2015年 第2問
次の問に答えよ.

(1)関数$f(x)=xe^{-2x}$に対し,$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.
(2)$n$を自然数とし,$\displaystyle S_n=\sum_{k=1}^n (n+k)^2$とする.$S_n$を$n$の式で表し,極限$\displaystyle \lim_{n \to \infty} \frac{S_n}{n^3}$を求めよ.
(3)定積分$\displaystyle \int_1^4 \frac{1}{\sqrt{x}(1+\sqrt{x})} \, dx$の値を求めよ.
スポンサーリンク

「導関数」とは・・・

 まだこのタグの説明は執筆されていません。