タグ「対称移動」の検索結果

1ページ目:全43問中1問~10問を表示)
静岡大学 国立 静岡大学 2016年 第4問
$\alpha$を絶対値が$1$の複素数とし,等式$z=\alpha^2 \overline{z}$を満たす複素数$z$の表す複素数平面上の図形を$S$とする.ただし,$\overline{z}$は$z$と共役な複素数を表す.このとき,次の各問に答えよ.

(1)$z=\alpha^2 \overline{z}$が成り立つことと,$\displaystyle \frac{z}{\alpha}$が実数であることは同値であることを証明せよ.また,このことを用いて,図形$S$は原点を通る直線であることを示せ.
(2)複素数平面上の点$\mathrm{P}(w)$を直線$S$に関して対称移動した点を$\mathrm{Q}(w^\prime)$とする.このとき,$w^\prime$を$w$と$\alpha$を用いて表せ.
南山大学 私立 南山大学 2016年 第1問
次の$[ ]$の中に答を入れよ.

(1)放物線$C_1:y=x^2+ax+8$を$x$軸方向に$5$だけ平行移動した放物線$C_2$の方程式は$y=[ア]$である.$C_2$を$y$軸に関して対称移動した放物線が$C_1$に一致するとき,定数$a$の値を求めると$a=[イ]$である.
(2)$455$と$273$の最大公約数は$[ウ]$である.また,方程式$455x+273y=2821$を満たす自然数の組$(x,\ y)$をすべて求めると$(x,\ y)=[エ]$である.
(3)$0<\theta<\pi$とする.方程式$\cos 2\theta-\sin \theta=0$を解くと$\theta=[オ]$であり,方程式$\sin 2\theta-\cos 2\theta-\sqrt{6} \sin \theta+1=0$を解くと$\theta=[カ]$である.
(4)$3$つのさいころを同時に投げる.このとき,出る目の積が奇数になる確率は$[キ]$であり,出る目の積が$4$以上の偶数になる確率は$[ク]$である.
東京薬科大学 私立 東京薬科大学 2016年 第2問
次の問に答えよ.

(1)関数$y=\log_{\frac{1}{2}}(3-x)$のグラフ$C_1$は,$y=\log_2 (x+1)$のグラフ$C_2$を原点について対称移動し,$x$軸方向に$[ソ]$だけ平行移動したものであり,$C_1$と$C_2$の交点の座標は
\[ \left( [タ] \pm \sqrt{[チ]},\ \log_2 \left( [ツ] \pm \sqrt{[テ]} \right) \right) \quad \text{(複号同順)} \]
である.また,関数$y=\log_2 (x+1)-\log_{\frac{1}{2}}(3-x)$は$x=[ト]$のとき,最大値$[ナ]$をとる.
(2)赤球$3$個,青球$2$個,白球$1$個の計$6$個の球を横一列に並べるとき,並べ方は全部で$[ニヌ]$通りある.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,

(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.

(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,

(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.

(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.


(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,

(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.

(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.


(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,

(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.

(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
沖縄国際大学 私立 沖縄国際大学 2016年 第1問
$a$を定数とし,$2$次関数$y=x^2-2(a+1)x+10a-15$のグラフを$C$とする.次の各問いに答えなさい.

(1)グラフ$C$が$x$軸に接するとき,$a$の値を求めなさい.
(2)$(1)$で求めた関数の頂点の座標を求めなさい.
(3)$(1)$で求めた$2$次関数のグラフ$C$を点$\mathrm{A}(1,\ 2)$に関して対称移動したグラフの方程式を求めなさい.
鳴門教育大学 国立 鳴門教育大学 2015年 第2問
$m$を定数とし,放物線$y=x^2+mx-2m+1$を$C_1$とします.次の問いに答えなさい.

(1)$C_1$を原点に関して対称移動した後,さらに$x$軸方向に$1$,$y$軸方向に$-m$だけ平行移動した放物線を$C_2$とするとき,放物線$C_2$の方程式を求めなさい.
(2)$2$つの放物線$C_1,\ C_2$がともに,$x$軸と共有点をもつような定数$m$の値の範囲を求めなさい.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第2問
$e$を自然対数の底とする.$xy$平面上で,曲線$y=e^{2x}$の,点$(t,\ e^{2t})$における接線を$\ell_t$とし,点$(s,\ e^{2s})$における接線を$\ell_s$とする.$\ell_s$の傾きが$\ell_t$の傾きの$e$倍に等しいとする.

(1)$\ell_t$と$\ell_s$の交点の座標を$t$を用いて表せ.
(2)$\ell_s$を,$y$軸に関して対称移動して得られる直線を$L$とする.$L$と直線$x=t$との交点を$\mathrm{P}_t$とする.$\mathrm{P}_t$の$y$座標を$t$を用いて表せ.
(3)$a$を正の実数とする.$t$が$0 \leqq t \leqq a$の範囲を動くとき,$(2)$で定めた点$\mathrm{P}_t$が描く曲線を$C$とする.$C$と$x$軸および直線$x=a$とで囲まれた図形の面積を求めよ.
北星学園大学 私立 北星学園大学 2015年 第1問
定義域を$-2 \leqq x \leqq 3$とする放物線$y=ax^2+2ax+b$がある.ただし,その形は下に凸であるとする.以下の問に答えよ.

(1)この関数の最大値が$6$,最小値が$-2$であるとき,定数$a,\ b$の値を求めよ.
(2)$(1)$で求めた放物線を原点に関して対称移動したあとの放物線の式を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第1問
原点を中心とした半径$1$の円に内接する正三角形$T_1$がある.$T_1$の頂点の$1$つが$\mathrm{A}(0,\ 1)$であり,$T_1$の残りの頂点のうち,$x$座標が負の値である方を$\mathrm{B}$とする.また,$T_1$を原点に関して対称移動したものを$T_2$とする.

(1)直線$\mathrm{AB}$の方程式は,$[$1$]$である.
(2)直線$\mathrm{AB}$と$T_2$の辺との交点のうち,$x$座標の値が大きい方の座標は$(x,\ y)=[$2$]$である.
(3)$T_1$と$T_2$が重なる部分の面積は$[$3$]$である.
大阪府立大学 公立 大阪府立大学 2015年 第4問
実数全体を定義域とする関数$f(x),\ g(x)$をそれぞれ
\[ f(x)=e^x,\quad g(x)=\frac{e^{x+1}+e^{-x-1}}{2} \]
で定める.曲線$y=f(x)$上の点$(t,\ e^t)$における法線に関して,直線$x=t$を対称移動した直線を$\ell$とする.このとき,以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$は曲線$y=g(x)$に接することを示し,その接点の$x$座標を求めよ.
(3)$(2)$で求めた接点を$\mathrm{P}$とする.$\ell$と曲線$y=f(x)$,および$\mathrm{P}$を通り$y$軸に平行な直線で囲まれた部分の面積を$S(t)$とする.$t$が実数全体を動くとき,$S(t)$の最小値を求めよ.
スポンサーリンク

「対称移動」とは・・・

 まだこのタグの説明は執筆されていません。