タグ「対数」の検索結果

71ページ目:全1047問中701問~710問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ラ]$までに当てはまる数字$0$~$9$を求めて記入せよ.ただし,分数は既約分数として表しなさい.

(1)数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$は次の関係式を満たすとする.
\[ a_1=0, \quad \left\{ \begin{array}{l}
b_n=\displaystyle\frac{1}{5}a_n+1 \\
a_{n+1}=3b_n+2
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_1 = [ア]$で,$n \geq 1$に対して$b_{n+1} = \displaystyle\frac{[イ]}{[ウ]} b_n + \frac{[エ]}{[オ]}$となる.これより,
\[ b_n = \displaystyle\frac{[カ]}{[キ]} - \frac{[ク]}{[ケ]} \left(\frac{[コ]}{[サ]} \right)^{n-1} \quad (n \geq 1) \]
となるので,
\[ \lim_{n \to \infty} b_n = \frac{[シ]}{[ス]}, \qquad \lim_{n \to \infty} \frac{b_{2n}-b_n}{b_{n+1}-b_n} = \frac{[セ]}{[ソ]} \]
となる。また,
\[ \sum_{n=1}^{\infty} (a_{2n}-a_n) = \frac{[タ][チ][ツ]}{[テ][ト]} \]
である.
(2)複素数$z = \cos\theta + i\sin\theta (0 \leq \theta<2\pi)$に対して,複素数$\omega$を
\[ \omega = (4+3i)z + 6i\,\overline{z} \]
で定める.ただし,$i$は虚数単位を,$\overline{z}=\cos\theta-i\sin\theta$は$z$と共役な複素数を表す.
いま$z$の実部と虚部がともに$0$以上となる範囲で$\theta$を動かす.このとき,$\omega$の実部の最大値は[ナ],最小値は[ニ]であり,$\omega \overline{\omega}$の最大値は[ヌ][ネ][ノ],最小値は[ハ][ヒ]である.ただし,$\overline{\omega}$は$\omega$と共役な複素数を表す.

(3)$x>0$で定義された微分可能な関数$f(x)$が,
\[ f^\prime(x) = 2\log x + \frac{1}{7-2e} \int_1^{e} \frac{f(t)}{t}\, dt, \quad f(1)=0 \]
を満たすとする.ここで,$f^\prime(x)$は$f(x)$の導関数,$\log$は自然対数,$e$は自然対数の底である.$f(x)$を求めると,
\[ f(x) = [フ] x\log x - \frac{[ヘ]}{[ホ]} x + \frac{[マ]}{[ミ]} \quad (x>0) \]
となる.関数$f(x)$は$\displaystyle x=e^{-\frac{[ム]}{[メ]}}$のとき,最小値
\[ -[モ]e^{-\frac{[ヤ]}{[ユ]}} + \frac{[ヨ]}{[ラ]}\]
をとる。
東京理科大学 私立 東京理科大学 2012年 第2問
$2$つの関数
\[ x=g(\theta)=\frac{9}{4}\sin 2\theta, \quad y=h(x)=\log x \]
に対して,関数$g(\theta)$と関数$h(x)$の合成関数
\[ f(\theta) = h(g(\theta)) \]
を考える.ただし,対数は自然対数とする.

(1)$\displaystyle f\left( \frac{\pi}{3} \right) = -[ア]\log 2 + \frac{[イ]}{[ウ]}\log 3$である.

(2)実数$\theta_1$が$\displaystyle \sin \theta_1+\cos \theta_1 = \frac{\sqrt{82}}{8}$を満たすとき,
\[ f(\theta_1) = - [エ] \log 2 + [オ]\log 3 \]
である.
(3)$f(\theta)$の$\displaystyle\theta=\frac{\pi}{8},\ \theta=\frac{\pi}{12}$における微分係数はそれぞれ
\[ f^{\; \prime} \left( \frac{\pi}{8} \right) = [カ], \quad f^{\; \prime} \left(\frac{\pi}{12}\right) = [キ]\sqrt{[ク]} \]
となる.
明治大学 私立 明治大学 2012年 第1問
次の空欄$[ア]$から$[エ]$に当てはまるものを答えよ.ただし,$\log$は自然対数,$e$はその底である.

(1)$\displaystyle\lim_{n \to \infty} \left( \sqrt{n^2+n} - \sqrt{n^2-n} \right) = [ア]$

(2)$\displaystyle\lim_{x \to 0} \frac{32^x-1}{8^x-1} = [イ]$

(3)ある物質$\mathrm{P}$は時間とともに変化し,その量が減少する.時刻$t$における物質$\mathrm{P}$の量$y(t)$は,
\[ y(t) = ae^{-kt} \quad (t \geqq 0) \]
であるとする.ただし,$a>0,\ k>0$は定数であり,$a$は時刻$t=0$における物質$\mathrm{P}$の量である.物質$\mathrm{P}$の量が$\displaystyle \frac{a}{2}$となる時刻$t_0$は
\[ t_0 = [ウ]\log [エ]\]
である.
明治大学 私立 明治大学 2012年 第1問
次の各問の$[ ]$に入る数値を書け.

(1)$x^{\log_5 x} = 25x$を満たす$x$は,大きい方から順に$x=[$1$]$と,$x=[$2$]$である.
(2)$y=x^3-ax^2+x+4$と$y=x$が,異なる$2$点のみを共有するとき,$a=[$3$]$であり,$x>0$の範囲で,$x=[$4$]$のとき共有点を持つ.
(3)放物線$\displaystyle C_1\ :\ y=\frac{x^2}{2}$と放物線$\displaystyle C_2\ :\ y=\frac{x^2}{2}-2x+4$にともに接する直線を$\ell$とするとき,$\ell$の傾きは,
$[$5$]$であり,$C_1,\ C_2,\ \ell$で囲まれた領域の面積は$[$6$]$である.
明治大学 私立 明治大学 2012年 第2問
$f(x)=x^3-48x,\ g(x)=9x+k$($k$は定数)がある.以下の問に答えなさい.

(1)$y=f(x)$と$y=g(x)$のグラフが$3$つの異なる交点を持つ必要十分条件は$|k|<[ケ][コ]\sqrt{[サ][シ]}$である.
(2)$y=f(x)$は,$x=a$のとき,極大値$b$をとる.また,$g(a)=c$とする.
$\log_{10}b-7\log_{10}c+7=0$が成立するのは,$k=[ス][セ]$のときである.このとき,$y=f(x)$と$y=g(x)$のグラフは,$3$つの異なる交点をもち,それらの$x$座標の値は,小さい順に並べると$-[ソ],\ -[タ],\ [チ]$となる.
上智大学 私立 上智大学 2012年 第1問
次の各問に答えよ.

(1)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を重複なく使ってできる$5$桁の整数を小さい方から順に並べたとき,$70$番目の数を$100$で割った余りは$[ア]$である.
(2)$\displaystyle 16^{\log_2 3}=[イ]$である.
(3)$m^n=1024$を満たす自然数の組$(m,\ n)$は$[ウ]$通りある.その中で最小の$m$は$[エ]$,最小の$n$は$[オ]$である.
(4)$x$の式$(1+x+ax^2)^6$を展開したときの$x^4$の係数は,$a=[カ]$のときに最小値$[キ]$をとる.
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
明治大学 私立 明治大学 2012年 第1問
空欄$[ ]$に当てはまるものを入れよ.

(1)$5$個の数字$0$,$1$,$2$,$3$,$4$を並べて$5$桁の整数を作る.小さい順にこれらの整数を並べたとき,$57$番目の整数は$\fbox{\footnotesize \phantom{a}アイウエオ\phantom{a}}$である.また,偶数である整数は$[カキ]$個あり,$4$の倍数である整数は$[クケ]$個ある.
(2)次の連立方程式
\[ \left\{ \begin{array}{l}
\log_xy+2 \log_y x=3 \\
\log_x(y^2+xy)=2
\end{array} \right. \]
の解は$\displaystyle x=\frac{-[コ]+\sqrt{[サ]}}{[シ]}$,$\displaystyle y=\frac{[ス]-\sqrt{[セ]}}{[ソ]}$である.
(3)自然数$1,\ 2,\ \cdots,\ n$の中から異なる二つの数を選んで積を作る.このような積全ての和を$S_n$とおく.ただし,$S_1=0$とする.$S_n$と$S_{n-1}$の間には漸化式
\[ S_n=S_{n-1}+n \cdot \frac{[タ]}{[チ]} \]
が成り立つ.これを使って,$S_n$を求めると
\[ S_n=\frac{1}{[ツテ]} \cdot n(n+1)([ト]) \]
となる.
青森中央学院大学 私立 青森中央学院大学 2012年 第5問
方程式$\log_2(x-5) = \log_4(x-3)$を解け.
上智大学 私立 上智大学 2012年 第1問
次の空欄に適する数,数式を入れよ.

(1)$f(x)=|2 \sin x-\cos 2x+\displaystyle\frac{1|{2}}$とおく.$\sin x=[ア]$のとき$f(x)$は最大値$\displaystyle\frac{[イ]}{[ウ]}$をとる.また,$\sin x = \displaystyle\frac{[エ]+\sqrt{[オ]}}{[カ]}$のとき$f(x)$は最小値[キ]をとる.
(2)$x,\ y,\ z$は次の条件を満たす実数とする.
\[ 0 \leqq x \leqq y \leqq z \leqq \frac{4}{5}, \quad x+2y+z = 1 \]
このとき,$y$の最小値は$\displaystyle\frac{[ク]}{[ケ]}$,最大値は$\displaystyle\frac{[コ]}{[サ]}$である.
(3)不等式
\[ \log_2 x - 6\log_x 2 \geqq 1 \]
の解は
\[ \frac{[シ]}{[ス]} \leqq x < [セ], \quad x \geqq [ソ] \]
である.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。