タグ「対数」の検索結果

41ページ目:全1047問中401問~410問を表示)
福岡大学 私立 福岡大学 2014年 第1問
$y=(\log_3 3x)^2+\log_3 (9x)^3+\log_3 x+2$とする.$\log_3 x=t$とおいて$y$を$t$の式で表すと$[ ]$となる.$y$が最小となる$x$の値を求めると,$x=[ ]$である.
近畿大学 私立 近畿大学 2014年 第3問
$a,\ b$を正の定数とし,関数
\[ f(x)=\frac{1}{e^{\frac{x-a}{b}}+2} \quad (x>0) \]
を考える.

(1)$x>a$のとき,$\displaystyle \lim_{b \to +0}f(x)=[ア]$であり,$x<a$のとき,$\displaystyle \lim_{b \to +0}f(x)=\frac{[イ]}{[ウ]}$である.
(2)曲線$y=f(x)$の点$(a,\ f(a))$における接線の方程式は,$\displaystyle y=\frac{[エオ]}{[カ]b}x+\frac{a+[キ]b}{[ク]b}$である.
(3)$\displaystyle b=\frac{1}{3}$とする.$t=e^{3(x-a)}$とおくと,$\displaystyle \frac{dx}{dt}=\frac{1}{[ケ]t}$であり,正の定数$c$に対して,
\[ \int_a^{a+c}f(x) \, dx=\frac{1}{[コ]} \log \left( \frac{[サ]e^{3c}}{e^{3c}+[シ]} \right) \]
となる.また,正の定数$p,\ q$が,$\displaystyle \int_{a-q}^{a+p} f(x) \, dx=\frac{4}{3}p$を満たすとき,
\[ q=\frac{1}{[ス]} \log \left( \frac{e^{[セ]p}+[ソ]e^{[タ]p}-1}{[チ]} \right) \]
となる.
京都薬科大学 私立 京都薬科大学 2014年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$a$を実数の定数として,放物線$y=2x^2-(a+3)x+a+1$のグラフの頂点は$([ア],\ [イ])$で,この点は$a$の値にかかわらず,放物線$y=[ウ]x^2+[エ]x-[オ]$上にある.
(2)平面上の直線$y=2x+1$と点$(0,\ 1)$において${45}^\circ$の角度で交わる直線は$2$つあり,これらの直線の方程式は,$[カ]$と$[キ]$である.
(3)$5$つの数$\sqrt[3]{4}$,$1$,$16^{\frac{1}{5}}$,$\log_43$,$\log_32$を小さいほうから順に並べると
\[ [ク]<[ケ]<[コ]<[サ]<[シ] \]
となる.
(4)方程式$7x+19y=2014$を満たす自然数の組$(x,\ y)$は$[ス]$個ある.
愛知工業大学 私立 愛知工業大学 2014年 第1問
次の$[ ]$を適当に補え.

(1)$ab(a+b)-2bc(b-c)+ca(2c-a)-3abc$を因数分解すると$[ア]$となる.
(2)自然数$n$をいくつかの$1$と$2$の和で表すときの表し方の総数を$a(n)$とする.ただし,和の順序を変えた表し方は同じ表し方とする.例えば,$4=2+2$,$4=2+1+1$,$4=1+1+1+1$であるから,$a(4)=3$である.このとき,$a(9)=[イ]$,$a(2014)=[ウ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$\displaystyle S_n=\frac{n}{n+1}$であるとき,$a_n=[エ]$,$\displaystyle \sum_{k=1}^n \frac{1}{a_k}=[オ]$である.
(4)$0 \leqq \theta \leqq \pi$とする.$\sin \theta+\cos \theta=t$とすると,$t$のとりうる値の範囲は$[カ] \leqq t \leqq [キ]$であり,$\sin \theta+\cos \theta+2 \sin 2\theta$の最大値は$[ク]$,最小値は$[ケ]$である.
(5)$\log_2 64=[コ]$である.また,$x$を$1$でない正の数とするとき,$\log_4 x^2-\log_x 64 \leqq 1$をみたす$x$の範囲は$[サ]$である.
(6)$f(x)=\sin 2x$とするとき,$f^\prime(x)=[シ]$である.また,$\displaystyle \int_0^{\frac{\pi}{6}} \sin^2 2x \cos 2x \, dx=[ス]$である.
大阪工業大学 私立 大阪工業大学 2014年 第3問
数列$\{a_n\}$が$a_1=1$,$a_{n+1}=a_n(a_n+2) (n=1,\ 2,\ 3,\ \cdots)$で定義されるとき,次の空所を埋めよ.

(1)$b_n=a_n+1$とおくと,$b_1=[ア]$であり,$b_3=[イ]$である.また,$b_{n+1}$を$b_n$を用いて表すと,$b_{n+1}=[ウ]$となる.
(2)$c_n=\log_2b_n$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列である.
(3)$c_8=[カ]$だから,$a_8$は$[キ]$桁の整数である.ただし,$\log_{10}2=0.3010$とする.
大阪工業大学 私立 大阪工業大学 2014年 第4問
$2$つの関数$f(x)=\log (a-4x)$,$g(x)=\log x$について,次の問いに答えよ.ただし,$a$は定数であり,$a>4$とする.

(1)曲線$y=f(x)$と$x$軸の共有点$\mathrm{A}$の座標を求めよ.
(2)$2$曲線$y=f(x)$と$y=g(x)$の共有点$\mathrm{B}$の座標を求めよ.
(3)曲線$y=f(x)$の点$\mathrm{B}$における接線と,曲線$y=g(x)$の点$\mathrm{B}$における接線が直交するとき,$a$の値を求めよ.
(4)$a$を$(3)$で求めた値とするとき,$2$曲線$y=f(x)$,$y=g(x)$と$x$軸で囲まれた図形の面積を求めよ.
京都産業大学 私立 京都産業大学 2014年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x^2+x-2 \leqq 0 \displaystyle \phantom{\frac{1}{[ ]}} \\
\displaystyle\frac{x-6}{7}>\frac{x-4}{5}
\end{array} \right. \]
を満たす$x$の値の範囲は$[ ]$である.
(2)座標平面上の$3$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(3,\ 3)$,$\mathrm{C}(2,\ 6)$に対して,$2$つのベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の内積は$[ ]$である.
(3)$(x+2y)^6$の展開式における$x^2y^4$の係数は$[ ]$である.
(4)$a$を実数とするとき,$x$の方程式$(\log_2 x)^2+(a+1) \log_2 x+1=0$が異なる$2$つの実数の解をもつような$a$の値の範囲は$[ ]$である.
(5)$\triangle \mathrm{OAB}$において$\mathrm{OA}=3$,$\mathrm{OB}=4$,$\angle \mathrm{AOB}={15}^\circ$のとき,$\triangle \mathrm{OAB}$の面積は$[ ]$である.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点$\mathrm{O}$を通り,曲線$y=2+2 \log x$に接する直線を$\ell$とし,その接点を$\mathrm{A}$とする.また,この曲線と直線$\ell$,および$x$軸で囲まれた図形を$D$とする.

(1)この曲線と$x$軸との交点の$x$座標は$\displaystyle \frac{[ア]}{e}$である.
(2)接点$\mathrm{A}$の座標は$([イ],\ [ウ])$である.
(3)図形$D$の面積は$\displaystyle [エ]-\frac{[オ]}{e}$である.
(4)図形$D$を$x$軸のまわりに$1$回転してできる立体の体積は$\displaystyle \frac{[カ]([キ]-e)}{[ク]e} \pi$である.
青山学院大学 私立 青山学院大学 2014年 第4問
次の問に答えよ.

(1)$y=\log x$のグラフをもとにして,$y=\log (3-x)$と$\displaystyle y=\log \frac{4}{x+2}$のグラフをかけ.
(2)曲線$y=\log (3-x)$と曲線$\displaystyle y=\log \frac{4}{x+2}$で囲まれた図形の面積を求めよ.
龍谷大学 私立 龍谷大学 2014年 第2問
次の問いに答えなさい.

(1)$2 \cdot 8^{2x}-3 \cdot 8^x-2=0$を満たす$x$を求めなさい.
(2)$y>0$とする.$2{(\log_2 y)}^2-3 \log_2 y-2=0$を満たす$y$を求めなさい.
(3)$0 \leqq z \leqq 2\pi$とする.$2 \sin^2 z-3 \sin z-2=0$を満たす$z$を求めなさい.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。