タグ「対数」の検索結果

19ページ目:全1047問中181問~190問を表示)
佐賀大学 国立 佐賀大学 2015年 第2問
直線$\ell:y=ax+b$と曲線$C:y=\log x (x>0)$は接するものとする.ただし,$a,\ b$は定数であり,$a>0$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$\ell$と$C$および$x$軸で囲まれた図形の面積を$S$とする.$0<a<1$のとき,$S$を$a$を用いて表せ.
大分大学 国立 大分大学 2015年 第3問
正の実数$p_i,\ q_i (i=1,\ 2,\ \cdots,\ n)$が$\displaystyle \sum_{i=1}^n p_i=\sum_{i=1}^n q_i=1$を満たすとき,次の問いに答えなさい.

(1)不等式$\log x \leqq x-1$が成り立つことを証明しなさい.
(2)不等式$\displaystyle \sum_{i=1}^n p_i \log p_i \geqq \sum_{i=1}^n p_i \log q_i$が成り立つことを証明しなさい.
(3)$\displaystyle F=\sum_{i=1}^n p_i \log p_i$の最小値を求めなさい.
(4)正の実数$a_i (i=1,\ 2,\ \cdots,\ n)$に対して,$\displaystyle G=\sum_{i=1}^n a_i \log a_i$の最小値を求めなさい.
九州工業大学 国立 九州工業大学 2015年 第3問
$n$を$2$以上の自然数とし,関数$f(x)$を$f(x)=x^n \log x (x>0)$とする.ただし,対数は自然対数とする.次に答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x+\frac{1}{x}>0$を証明せよ.
(2)$\displaystyle \lim_{x \to +0}x^n \log x=0$を示せ.
(3)関数$f(x)$の増減を調べ,その最小値を求めよ.また,曲線$y=f(x)$の概形をかけ.ただし,曲線の凹凸は調べなくてよい.
(4)$f(x)$が最小値をとるときの$x$の値を$c_n$とし
\[ I_n=\int_{c_n}^1 f(x) \, dx \]
とする.$\displaystyle \lim_{n \to \infty} n^2I_n$を求めよ.
徳島大学 国立 徳島大学 2015年 第2問
$a>0$とし,$\displaystyle I=\int_0^1 |ax-x \log (x+1)| \, dx$とする.

(1)不定積分$\displaystyle \int \{ax-x \log (x+1)\} \, dx$を求めよ.
(2)$ax-x \log (x+1)=0$を満たす$x$を求めよ.
(3)$I$を$a$を用いて表せ.
(4)$a$が$a>0$の範囲を動くとき,$I$を最小にする$a$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第2問
スイッチを押すと,$0$から$n$までの整数が$1$つ表示される機械がある.表示される数字を$X$とすると,$X=k$となる確率$P(X=k)=C \alpha^k (k=0,\ 1,\ 2,\ \cdots,\ n)$である.ただし,$C$は定数,$0<\alpha<1$である.

(1)$P(X=k)$を$\alpha$と$k$で表せ($k=0,\ 1,\ 2,\ \cdots,\ n$).
(2)$P(X<k)>1-\alpha^k$であることを示せ($k=1,\ 2,\ 3,\ \cdots,\ n+1$).
(3)確率$p$で$1$点もらえ,確率$1-p$で得点がもらえない試行を考える($0<p<1$).この試行を独立に$m$回行ったとき,$l$点($0 \leqq l \leqq m$)もらえる確率を$Q_{m,l}(p)$と表す.このとき,$m,\ l$を一定とし,$p$を変数とみなして以下の問に答えよ.

(i) $y=\log Q_{m,l}(p)$はどのような変化をするか.$p$を横軸,$y$を縦軸とする$y$のグラフの概形を描け.ただし,$\log$は自然対数である.
(ii) $Q_{m,l}(p)$を最大にする$p$を求めよ.

(4)$\displaystyle \alpha=\frac{1}{2}$とする.このとき,$Q_{2m,m}(P(X<k))$を最大にする$k (k=1,\ 2,\ 3,\ \cdots,\ n)$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第4問
関数$\displaystyle f_1(x)=\frac{2}{1+e^x}$,$\displaystyle \log f_2(x)=\frac{1}{2}\int_0^x f_1(t) \, dt$,$\displaystyle \log f_3(x)=-\frac{1}{2}\int_0^x f_2(t) \, dt$,$\displaystyle \log f_4(x)=\frac{1}{2}\int_0^x f_3(t) \, dt$,$\cdots$,
\[ \log f_k(x)=\frac{{(-1)}^k}{2}\int_0^x f_{k-1}(t) \, dt \quad (k=2,\ 3,\ 4,\ \cdots) \]
とする.ただし,$\log$は自然対数である.また,
\[ g_k(x)=f_k(x) \times \frac{x \sin x}{4-\cos^2 x} \quad (k=1,\ 2,\ 3,\ \cdots) \]
とする.さらに,


$\displaystyle I_n=\sum_{k=1}^{2n+1} \int_{-\pi}^{\pi} g_k(x) \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$,

$\displaystyle J=\int_0^{\pi} \frac{x \sin x}{4-\cos^2 x} \, dx$,

$\displaystyle K=\int_0^{\pi} \frac{\sin x}{4-\cos^2 x} \, dx$


とする.このとき,以下の問に答えよ.

(1)$f_k(x)$を積分を使わずに表せ($k=2,\ 3,\ 4,\ \cdots$).
(2)$I_n$を$J$で表せ($n=1,\ 2,\ 3,\ \cdots$).
(3)$J$を$K$で表せ.
(4)$I_n$を求めよ($n=1,\ 2,\ 3,\ \cdots$).
小樽商科大学 国立 小樽商科大学 2015年 第1問
次の$[ ]$の中を適当に補え.

(1)$n^2-92n+2015 \leqq 0$を満たす整数$n$は全部で$[$(\mathrm{a])$}$個である.
(2)方程式$\log_x (x^3+2)=\log_x x(2x+1)$を解くと$x=[$(\mathrm{b])$}$である.
(3)下図の直角三角形$\mathrm{ACD}$において,$\angle \mathrm{BCD}={90}^\circ$,$\angle \mathrm{DAC}=\alpha$,$\angle \mathrm{DBC}=\beta$,$\mathrm{AB}=x$,$\mathrm{CD}=h$とするとき,$h$を$x,\ \alpha,\ \beta$で表すと$h=[$(\mathrm{c])$}$である.
(図は省略)
小樽商科大学 国立 小樽商科大学 2015年 第5問
曲線$C:y=\log x$上の点$\displaystyle \left( \frac{3}{2},\ \log \frac{3}{2} \right)$における$C$の接線と直線$x=1$,$x=3$,曲線$C$で囲まれた部分の面積を求めよ.ただし,$\log x$は$x$の自然対数とする.
弘前大学 国立 弘前大学 2015年 第1問
次の問いに答えよ.

(1)$a$を実数とする.$\displaystyle \int_0^\pi \sin^2 ax \, dx$を$a$を用いて表せ.
(2)関数$\displaystyle f(x)=\frac{\log x}{x}$の増減を調べ,$2$つの数${59}^{61},\ {61}^{59}$の大小関係を決定せよ.
(3)$\displaystyle \lim_{k \to \infty}k^2 \int_1^{e^{\frac{1}{k}}} \frac{\log x}{x^k} \, dx$を求めよ.ただし,$k$は自然数を動くものとする.
弘前大学 国立 弘前大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{1}{2}$のとき,次の不等式が成り立つことを示せ.
\[ -x^2-x \leqq \log (1-x) \leqq -x \]
(2)数列$\{a_n\}$を次によって定める.
\[ \begin{array}{rcl}
a_1 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 1^2} \right) \\
a_2 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 2^2} \right) \left( 1-\frac{2}{2 \cdot 2^2} \right) \phantom{\displaystyle\frac{[ ]}{2}} \\
& \vdots & \\
a_n &=& \displaystyle \left( 1-\frac{1}{2n^2} \right) \left( 1-\frac{2}{2n^2} \right) \cdots \left( 1-\frac{n}{2n^2} \right)
\end{array} \]
このとき,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
スポンサーリンク

「対数」とは・・・

 まだこのタグの説明は執筆されていません。