タグ「実数」の検索結果

2ページ目:全2197問中11問~20問を表示)
大分大学 国立 大分大学 2016年 第4問
$2$つの曲線$\displaystyle y=x+2 \cos x \left( \frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$と$\displaystyle y=x-2 \cos x \left( \frac{\pi}{2} \leqq x \leqq \frac{3}{2}\pi \right)$をつないでできる曲線を$C$とする.

(1)曲線$C$の概形を図示しなさい.
(2)$k$を実数とする.曲線$C$と直線$y=k$が異なる$2$点で交わるための$k$の値の範囲を求めなさい.
(3)曲線$C$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を求めなさい.
北海道大学 国立 北海道大学 2016年 第1問
複素数平面上の点$0$を中心とする半径$2$の円$C$上に点$z$がある.$a$を実数の定数とし,
\[ w=z^2-2az+1 \]
とおく.

(1)$|w|^2$を$z$の実部$x$と$a$を用いて表せ.
(2)点$z$が$C$上を一周するとき,$|w|$の最小値を$a$を用いて表せ.
九州大学 国立 九州大学 2016年 第5問
以下の問いに答えよ.

(1)$\theta$を$0 \leqq \theta<2\pi$を満たす実数,$i$を虚数単位とし,$z$を$z=\cos \theta+i \sin \theta$で表される複素数とする.このとき,整数$n$に対して次の式を証明せよ.
\[ \cos n\theta=\frac{1}{2} \left( z^n+\frac{1}{z^n} \right),\quad \sin n\theta=-\frac{i}{2} \left( z^n-\frac{1}{z^n} \right) \]
(2)次の方程式を満たす実数$x (0 \leqq x<2\pi)$を求めよ.
\[ \cos x+\cos 2x-\cos 3x=1 \]
(3)次の式を証明せよ.
\[ \sin^2 {20}^\circ+\sin^2 {40}^\circ+\sin^2 {60}^\circ+\sin^2 {80}^\circ=\frac{9}{4} \]
北海道大学 国立 北海道大学 2016年 第1問
$a,\ b,\ c$を実数とし,
\[ f(x)=x^3+ax^2+bx+c \]
とおく.曲線$C:y=f(x)$上に異なる$2$点$\mathrm{P}(s,\ f(s))$,$\mathrm{Q}(t,\ f(t))$がある.

(1)$\mathrm{P}$における$C$の接線の方程式を求めよ.
(2)$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線が平行になるための条件を$s,\ t,\ a$の関係式として求めよ.
(3)$(2)$の条件のもとで,線分$\mathrm{PQ}$の中点が$C$上にあることを示せ.
北海道大学 国立 北海道大学 2016年 第3問
$\triangle \mathrm{ABC}$が,$\mathrm{AB}=2$,$\mathrm{AC}=1+\sqrt{3}$,$\angle \mathrm{ACB}={45}^\circ$をみたすとする.

(1)$\beta=\angle \mathrm{ABC}$とおくとき,$\sin \beta$および$\cos 2\beta$の値を求めよ.
(2)$(1)$の$\beta$の値をすべて求めよ.
(3)$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.$\triangle \mathrm{ABC}$が鋭角三角形であるとき,$\overrightarrow{\mathrm{OC}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$をみたす実数$s,\ t$を求めよ.
山口大学 国立 山口大学 2016年 第1問
関数$f(x)=|x^3-3x^2-3x+1|$について,次の問いに答えなさい.

(1)方程式$f(x)=0$の実数解をすべて求めなさい.
(2)$f(x)$の増減,極値を調べ,$y=f(x)$のグラフをかきなさい.ただし,グラフの変曲点と凹凸は調べなくてよい.
(3)$a$を実数の定数とする.$x$についての方程式$f(x)=a$が,ちょうど$4$個の異なる実数解をもつように,$a$の値の範囲を定めなさい.
九州大学 国立 九州大学 2016年 第1問
座標平面上の曲線$C_1,\ C_2$をそれぞれ

$C_1:y=\log x \quad (x>0)$
$C_2:y=(x-1)(x-a)$

とする.ただし,$a$は実数である.$n$を自然数とするとき,曲線$C_1$,$C_2$が$2$点$\mathrm{P}$,$\mathrm{Q}$で交わり,$\mathrm{P}$,$\mathrm{Q}$の$x$座標はそれぞれ$1,\ n+1$となっている.また,曲線$C_1$と直線$\mathrm{PQ}$で囲まれた領域の面積を$S_n$,曲線$C_2$と直線$\mathrm{PQ}$で囲まれた領域の面積を$T_n$とする.このとき,以下の問いに答えよ.

(1)$a$を$n$の式で表し,$a>1$を示せ.
(2)$S_n$と$T_n$をそれぞれ$n$の式で表せ.

(3)極限値$\displaystyle \lim_{n \to \infty} \frac{S_n}{n \log T_n}$を求めよ.
九州大学 国立 九州大学 2016年 第2問
$t$を$0<t<1$を満たす実数とする.面積が$1$である三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$,$t:1-t$,$1:3$に内分する点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$\mathrm{AE}$と$\mathrm{BF}$,$\mathrm{BF}$と$\mathrm{CD}$,$\mathrm{CD}$と$\mathrm{AE}$の交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$3$直線$\mathrm{AE}$,$\mathrm{BF}$,$\mathrm{CD}$が$1$点で交わるときの$t$の値$t_0$を求めよ.



以下,$t$は$0<t<t_0$を満たすものとする.


\mon[$(2)$] $\mathrm{AP}=k \mathrm{AE}$,$\mathrm{CR}=\ell \mathrm{CD}$を満たす実数$k,\ \ell$をそれぞれ求めよ.
\mon[$(3)$] 三角形$\mathrm{BCQ}$の面積を求めよ.
\mon[$(4)$] 三角形$\mathrm{PQR}$の面積を求めよ.
山口大学 国立 山口大学 2016年 第4問
$n$を自然数とする.このとき,次の問いに答えなさい.

(1)$\alpha,\ \beta$を実数とし,
\[ f(x)=\frac{\alpha}{x-\alpha}-\frac{\beta}{x-\beta} \]
とする.$f(x)$の第$n$次導関数$f^{(n)}(x)$について,次の等式が成り立つことを,数学的帰納法によって証明しなさい.
\[ f^{(n)}(x)={(-1)}^n n! \left\{ \frac{\alpha}{{(x-\alpha)}^{n+1}}-\frac{\beta}{{(x-\beta)}^{n+1}} \right\} \]
(2)$b,\ c$を$b^2>4c$を満たす実数とし,
\[ h(x)=\frac{x}{x^2-bx+c} \]
とする.また,$h(x)$の第$n$次導関数$h^{(n)}(x)$に対し,$\displaystyle a_n=\frac{c^nh^{(n)}(0)}{n!}$とおく.

(i) $2$次方程式$x^2-bx+c=0$の解を$\alpha,\ \beta$とする.$a_n$を$\alpha,\ \beta,\ n$を用いて表しなさい.
(ii) $a_{n+2}-ba_{n+1}+ca_n=0$が成り立つことを示しなさい.
広島大学 国立 広島大学 2016年 第1問
座標空間に$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(s,\ s,\ s),\quad \mathrm{B}(-1,\ 1,\ 1),\quad \mathrm{C}(0,\ 0,\ 1) \]
がある.ただし,$s>0$とする.$t,\ u,\ v$を実数とし,
\[ \overrightarrow{d}=\overrightarrow{\mathrm{OB}}-t \overrightarrow{\mathrm{OA}},\quad \overrightarrow{e}=\overrightarrow{\mathrm{OC}}-u \overrightarrow{\mathrm{OA}}-v \overrightarrow{\mathrm{OB}} \]
とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$のとき,$t$を$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{d}$,$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{e}$,$\overrightarrow{d} \perp \overrightarrow{e}$のとき,$u,\ v$を$s$を用いて表せ.
(3)$(2)$のとき,$2$点$\mathrm{D}$,$\mathrm{E}$を
\[ \overrightarrow{\mathrm{OD}}=\overrightarrow{d},\quad \overrightarrow{\mathrm{OE}}=\overrightarrow{e} \]
となる点とする.四面体$\mathrm{OADE}$の体積が$2$であるとき,$s$の値を求めよ.
スポンサーリンク

「実数」とは・・・

 まだこのタグの説明は執筆されていません。