タグ「定義」の検索結果

4ページ目:全248問中31問~40問を表示)
長崎大学 国立 長崎大学 2015年 第4問
区間$0 \leqq x \leqq \pi$上で定義される関数
\[ f(x)=\cos 2x-4 \sin^3 x \]
について,以下の問いに答えよ.

(1)関数$f(x)$の最大値と最小値を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)方程式$f(x)=0$の解を求めよ.
(4)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第4問
実数$x \neq 1$について定義される関数
\[ f(x)=\frac{1+x}{1-x} \]
を考える.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.
(2)$\displaystyle \lim_{x \to -\infty} f(x)$,$\displaystyle \lim_{x \to 1-0} f(x)$,$\displaystyle \lim_{x \to 1+0} f(x)$,$\displaystyle \lim_{x \to \infty} f(x)$を求めよ.
(3)$x$座標と$y$座標がともに整数である点を格子点という.曲線$y=f(x)$上の格子点の座標をすべて求めよ.
(4)関数$y=f(x)$のグラフをかけ.
(5)$x \leqq 0$かつ$y \geqq 0$で表される領域において,$x$軸と$y$軸および曲線$y=f(x)$で囲まれた図形の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
$x>0$で定義された曲線$y=\log x$を$C$とする.以下の問いに答えよ.

ただし,$\displaystyle \lim_{x \to 0}x \log x=0$を用いてよい.$a$を定数とする.

(1)点$(a,\ 0)$から$C$に何本の接線が引けるか調べよ.
(2)$C$の法線で点$(a,\ 0)$を通るものがちょうど$1$本あることを示せ.
(3)原点$(0,\ 0)$を通る$C$の接線,$x$軸,曲線$C$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
帯広畜産大学 国立 帯広畜産大学 2015年 第1問
数列$\{a_n\}$は初項$a$,公比$r$の等比数列であり,その一般項を$a_n$で表す.また,数列$\{b_n\}$は一般項が$b_n=\log_2 a_n$で定義され,その初項から第$n$項までの和を$S_n$で表す.ただし,$n$は自然数である.次の各問に答えなさい.

(1)$a_2=16$,$b_3=2$とする.

(i) $r,\ a$の値を求めなさい.
(ii) $b_5,\ S_5$の値を求めなさい.
(iii) 不等式$S_n \geqq 10$を満たす$n$の値をすべて求めなさい.

(2)$\displaystyle a=2^{32},\ \frac{a}{r}=2^{35}$とする.

(i) $r,\ a_{10}$の値を求めなさい.
(ii) $S_n$が最大になるとき,$n$および$S_n$の値を求めなさい.
(iii) 不等式$S_n<0$を満たす$n$の最小値を求めなさい.

(3)$\displaystyle x>-2,\ \beta=\frac{3\pi}{7},\ \theta=\frac{\pi}{14}$とする.

(i) 次の$3$つの条件を同時に満たす$x$の値を求めなさい.
\[ a=x+2,\quad r=x+3,\quad b_2=1+\log_2 (x+8) \]
(ii) $\log_2 a=\cos^2 \beta+\sin \beta \cos \theta$,$\log_2 r=\sin^2 \beta+\cos \beta \sin \theta$のとき,$b_2$の値を求めなさい.
(iii) $\log_2 a=\sin^2 \theta+\cos \beta \cos \theta$,$\displaystyle \log_2 r^2=\frac{1}{2} \cos 2\theta-\sin \beta \sin \theta$のとき,$b_3$の値を求めなさい.
帯広畜産大学 国立 帯広畜産大学 2015年 第2問
関数$f(x)=ax^2+bx+c$を用いて,関数$g(x)$が
\[ g(x)=\left\{ \begin{array}{ll}
-ax^2+1 & \displaystyle\left( x<\frac{\sqrt{a}}{a} \right) \\
f(x) & \displaystyle\left( x \geqq \frac{\sqrt{a}}{a} \right) \phantom{\frac{[ ]^{\mkakko{}}}{2}}
\end{array} \right. \]
で定義されている.ただし,$a,\ b,\ c$は定数で,$a>0$とする.次の各問に答えなさい.

(1)関数$f(x)$の導関数を求めなさい.
(2)曲線$C_1:y=f(x)$は点$\displaystyle \left( \frac{\sqrt{a}}{a},\ 0 \right)$を通り,この点における曲線$C_1$の接線の傾きは$-2 \sqrt{a}$であるとする.

(i) $b$を$a$の式で表しなさい.また,$c$の値を求めなさい.
(ii) 関数$g(x)$が$x=4$で極小になるように,$a$の値を定めなさい.

(3)曲線$C_2:y=g(x)$は$2$点$(2,\ -1)$,$(3,\ 0)$を通る.また,曲線$C_2$と直線$L:y=tx$で囲まれる部分の面積を$t$の関数として$S(t)$で表す.ただし,$a=1$,$0 \leqq t \leqq 2$とする.このとき,$S(t)$の導関数の値は正である.

(i) $b,\ c$の値をそれぞれ求めなさい.
(ii) $S(t)$の最小値を求めなさい.
(iii) $S(t)$が最大値をとるとき,曲線$C_2$と直線$L$のすべての交点の座標を求めなさい.また,$S(t)$の最大値を求めなさい.
電気通信大学 国立 電気通信大学 2015年 第2問
関数$f(t),\ g(t)$を次のように定義する.ただし,$e$は自然対数の底とする.
\[ f(t)=(t-1)e^{-t},\quad g(t)=(t-1)^2e^{-t} \]
$xy$平面上の曲線$C$が,媒介変数$t$を用いて
\[ x=f(t),\quad y=g(t) \quad (1 \leqq t \leqq 3) \]
と表されるとき,以下の問いに答えよ.

(1)$f(t)=g(t)$となる$t$の値を$\alpha,\ \beta (\alpha<\beta)$とする.$\alpha,\ \beta$の値を求めよ.さらに,$\alpha \leqq t \leqq \beta$のとき,$f(t) \geqq g(t)$であることを示せ.
(2)導関数$f^\prime(t),\ g^\prime(t)$をそれぞれ求めよ.さらに,区間$\alpha \leqq t \leqq \beta$において,関数$f(t)$,$g(t)$がともに単調に増加することを示せ.
(3)次の定積分をそれぞれ求めよ.
\[ I_1=\int_0^1 ue^{-2u} \, du,\quad I_2=\int_0^1 u^2 e^{-2u} \, du,\quad I_3=\int_0^1 u^3e^{-2u} \, du \]
(4)曲線$C$と直線$y=x$で囲まれた図形の面積$S$を求めよ.
スポンサーリンク

「定義」とは・・・

 まだこのタグの説明は執筆されていません。