タグ「定数」の検索結果

48ページ目:全1257問中471問~480問を表示)
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$1$次不等式$\displaystyle \frac{7+4x}{3} \geqq \frac{x+1}{2}-x$の解は$[$1$]$である.
(2)$\displaystyle \frac{1}{2+\sqrt{3}-\sqrt{5}}$の分母を有理化すると$[$2$]$となる.
(3)$A,\ B,\ C$を定数とする.$\displaystyle \frac{x^2+2x+17}{x^3-x^2-5x-3}=\frac{A}{(x+1)^2}+\frac{B}{x+1}+\frac{C}{x-3}$が$x$についての恒等式であるとき,$A=[$3$]$,$B=[$4$]$,$C=[$5$]$である.
(4)実数$a$に対して,$a$以下の整数で最大のものを$[a]$で表す.このとき,$[\log_2 7]=[$6$]$,$\displaystyle [\log_3 \frac{1}{25}]=[$7$]$である.
(5)大小$2$個のさいころを同時に投げる.このとき,目の和が$9$以下になる確率は$[$8$]$であり,目の積が$9$以下になる確率は$[$9$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とし,頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線$\mathrm{AH}$を下ろすとする.このとき,線分$\mathrm{AH}$の長さは$[$10$]$であり,$\triangle \mathrm{ABC}$の面積は$[$11$]$である.
広島修道大学 私立 広島修道大学 2014年 第3問
直線$y=-x+5$を$\ell$とするとき,次の問に答えよ.

(1)曲線$y=x^3-3x^2+2x+4$上の点$\mathrm{P}$における接線が直線$\ell$であるとき,点$\mathrm{P}$の座標を求めよ.
(2)$b,\ c$を定数とする,放物線$y=x^2+bx+c$上の点$\mathrm{Q}$における接線が直線$\ell$であるとき,定数$c$の値が最小となるように点$\mathrm{Q}$の座標を定めよ.
日本女子大学 私立 日本女子大学 2014年 第4問
$a,\ b,\ c,\ d$を定数で$a \neq 0$であるものとし,曲線$y=ax^3+bx^2+cx+d$と直線$y=2x-1$は,$x$座標が$2$である点で接し,$x$座標が$-1$である点で交わるものとする.

(1)$b,\ c,\ d$を$a$で表せ.
(2)これらの曲線と直線で囲まれた図形の面積が$\displaystyle \frac{9}{2}$であるとき,$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
$2$つの関数

$f(x)=2x^3-3x^2-12x$
$g(x)=-9x^2+6x+a$

に対して,次の問に答えよ.ただし$a$は定数とする.

(1)$f(x)$の極大値および極小値を与える$x$の値をそれぞれ$\alpha,\ \beta$とおく.$\alpha$および$\beta$の値を求めよ.
(2)任意の$x>\alpha$に対して,$f(x) \geqq g(x)$を満たす$a$の値の範囲を求めよ.
(3)任意の$x_1>\alpha$および任意の$x_2>\alpha$に対して,$f(x_1) \geqq g(x_2)$を満たす$a$の値の範囲を求めよ.
神奈川大学 私立 神奈川大学 2014年 第2問
$\displaystyle a_1=-\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{1}{2}a_n+\frac{1}{3^n} (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{a_n\}$について,次の問いに答えよ.

(1)$\displaystyle b_n=a_n+\frac{k}{3^n}$で定まる数列$\{b_n\}$が$\displaystyle b_{n+1}=\frac{1}{2}b_n$を満たすとき,定数$k$の値を求めよ.
(2)$(1)$で求めた$k$に対して,一般項$b_n$を求めよ.
(3)一般項$a_n$と$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
京都女子大学 私立 京都女子大学 2014年 第3問
$f(x)=|x+1|-|x^2+x|$とする.次の問に答えよ.

(1)関数$y=f(x)$のグラフをかけ.
(2)関数$y=f(x) (-2 \leqq x \leqq 2)$の最大値および最小値を求めよ.
(3)定数$a$を$0 \leqq a \leqq 2$とするとき,方程式$f(x)=a$の解を求めよ.
早稲田大学 私立 早稲田大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に

放物線$C_1:y=x^2$,円$C_2:x^2+(y-a)^2=1 \quad (a \geqq 0)$

がある.$C_2$の点$(0,\ a+1)$における接線と$C_1$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\triangle \mathrm{OAB}$が$C_2$に外接しているとする.次の問に答えよ.

(1)$a$を求めよ.
(2)点$(s,\ t)$を$(-1,\ a)$,$(1,\ a)$,$(0,\ a-1)$と異なる$C_2$上の点とする.そして点$(s,\ t)$における$C_2$の接線と$C_1$との$2$つの交点を$\mathrm{P}(\alpha,\ \alpha^2)$,$\mathrm{Q}(\beta,\ \beta^2)$とする.このとき,${(\alpha-\beta)}^2-\alpha^2 \beta^2$は$s,\ t$によらない定数であることを示せ.
(3)$(2)$において,点$\mathrm{P}(\alpha,\ \alpha^2)$から$C_2$への$2$つの接線が再び$C_1$と交わる点を$\mathrm{Q}(\beta,\ \beta^2)$,$\mathrm{R}(\gamma,\ \gamma^2)$とする.$\beta+\gamma$および$\beta\gamma$を$\alpha$を用いて表せ.
(4)$(3)$の$2$点$\mathrm{Q}$,$\mathrm{R}$に対し,直線$\mathrm{QR}$は$C_2$と接することを示せ.
神奈川大学 私立 神奈川大学 2014年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)$2$次方程式$x^2-2x+2=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\beta}{\alpha}+\frac{\alpha}{\beta}$の値は$[$(\mathrm{a])$}$である.
(2)$\overrightarrow{\mathrm{0}}$でない$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は,なす角が${60}^\circ$で,$|\overrightarrow{a}|=2 |\overrightarrow{b}|$である.$\overrightarrow{a}+\overrightarrow{b}$と$2 \overrightarrow{a}+t \overrightarrow{b}$が垂直であるとき,$t$の値は$[$(\mathrm{b])$}$である.
(3)$a^x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle \frac{a^{3x}-a^{-3x}}{a^x-a^{-x}}$の値は$[$(\mathrm{c])$}$である.
(4)円$x^2+y^2-2x-4y-4=0$上の点$\mathrm{A}$と,円$x^2+y^2-12x-14y+81=0$上の点$\mathrm{B}$について,$\mathrm{A}$と$\mathrm{B}$の距離の最小値は$[$(\mathrm{d])$}$である.
(5)$6$枚のコインを同時に投げるとき,ちょうど$3$枚のコインが表になる確率は$[$(\mathrm{e])$}$である.
(6)定数$a,\ b$に対して,$\displaystyle \lim_{x \to a} \frac{x^2-b}{x-a}=6$が成り立つとする.このとき,$a=[($\mathrm{f])$}$,$b=[$(\mathrm{g])$}$である.
早稲田大学 私立 早稲田大学 2014年 第1問
次の空欄$[$1$]$から$[$6$]$にあてはまる数または数式を記入せよ.

(1)$3$次曲線$y=x^3-6x^2+11x-4$と直線$y=ax$が第$1$象限の相異なる$3$点で交わるような定数$a$の範囲は$[$1$]<a<[$2$]$である.
(2)硬貨を投げ,$3$回つづけて表が出たら終了する.$n$回以下で終了する場合の数を$f_n$とする.$f_{10}=[$3$]$である.
(3)不等式$\displaystyle \frac{a}{19}<\log_{10}7<\frac{b}{13}$を満たす最大の整数$a$と最小の整数$b$は$a=[$4$]$,$b=[$5$]$である.必要に応じて次の事実を用いてもよい.
\[ \begin{array}{lll}
7^1=7 & 7^2=49 & 7^3=343 \\
7^4=2401 & 7^5=16807 & 7^6=117649 \\
7^7=823543 & 7^8=5764801 & 7^9=40353607 \\
7^{10}=282475249 & 7^{11}=1977326743 & 7^{12}=13841287201 \\
7^{13}=96889010407 & 7^{14}=678223072849
\end{array} \]
(4)四面体$\mathrm{ABCD}$は,$4$つの面のどれも$3$辺の長さが$7,\ 8,\ 9$の三角形である.この四面体$\mathrm{ABCD}$の体積は$[$6$]$である.
昭和大学 私立 昭和大学 2014年 第1問
次の問いに答えよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
-x+4<9 \\
3x-2<a \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を満たす整数$x$が存在しないような$a$の値の範囲を求めよ.
(2)$2$次方程式$x^2+2kx+k+12=0$が実数解をもち,それがすべて正となるような定数$k$の値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$において$a^2=b^2+c^2+bc$のとき,$\angle \mathrm{A}$を求めよ.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とする.
(4)$0^\circ \leqq x \leqq {180}^\circ$であるとき,不等式$2 \sin^2 x-5 \cos x+1 \leqq 0$を解け.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。