タグ「定数」の検索結果

31ページ目:全1257問中301問~310問を表示)
東京都市大学 私立 東京都市大学 2015年 第4問
次の問に答えよ.

(1)曲線$y=\cos (\pi x)$上の点$\displaystyle \mathrm{P} \left( \frac{9}{4},\ \cos \frac{9 \pi}{4} \right)$における接線の方程式を求めよ.
(2)$a,\ b$を定数とする.放物線$y=a(x-b)^2$が点$\displaystyle \mathrm{P} \left( \frac{9}{4},\ \cos \frac{9 \pi}{4} \right)$を通り,点$\mathrm{P}$におけるこの放物線の接線が$(1)$で求めた接線と一致するとき,$a,\ b$を求めよ.
(3)$(2)$で求めた$a,\ b$に対し
\[ f(x)=\left\{ \begin{array}{ll}
\cos \pi x & \left( x \leqq \displaystyle\frac{9}{4} \right) \\
a(x-b)^2 & \left( x \geqq \displaystyle\frac{9}{4} \right) \phantom{\frac{[ ]^{[ ]}}{2}}
\end{array} \right. \]
とする.$y=f(x)$のグラフをかけ.
東京都市大学 私立 東京都市大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)$\log_2 104+\log_2 (27+2+2)-\log_2(2015 \times 2 \div 10)$の値は$[ア]$である.
(2)実数$x,\ y$が等式$(2+xi)(5+i)=3y-8i$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)整式$P(x)=x^4$を$x-2$で割ると商が$[エ]$,余りが$[オ]$となる.$P(x)$を$(x-2)^2$で割ると商が$[カ]$,余りが$[キ]$となる.
(4)$3$次方程式$\displaystyle \frac{2}{3}x^3-ax^2+a=0$が異なる$3$個の実数解をもつとき,実数の定数$a$の値の範囲は$[ク]$である.
(5)自然数$n$に対して$a_n=2^{-n}$,$\displaystyle b_n=\int_{a_{n+1}}^{a_n} x \, dx$,$\displaystyle c_n=\sum_{k=1}^n b_k$と定義する.$b_n$を$n$の式で表すと$b_n=[ケ]$となるので,数列$\{b_n\}$は初項$[コ]$,公比$[サ]$の等比数列といえる.また,$c_n$を$n$の式で表すと$c_n=[シ]$となるので,数列$\{c_n\}$の和$\displaystyle S_n=\sum_{k=1}^n c_k$を$n$の式で表すと$\displaystyle S_n=[ス]$となる.
(6)$1$個のさいころを$4$回続けて投げるとする.$4$回とも同じ目が出る確率は$[セ]$であり,$1$から$4$までの目がそれぞれ$1$回ずつ出る確率は$[ソ]$である.また,出る目が$1$と$2$の$2$種類になる確率は$[タ]$であり,出る目が$1$から$6$までのいずれか$2$種類になる確率は$[チ]$である.
(7)$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(6,\ 3)$,$\mathrm{B}(2,\ 4)$を頂点とする$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が条件$\displaystyle 0 \leqq s+t \leqq \frac{1}{2}$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在範囲が$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の周および内部であるとすると,点$\mathrm{A}^\prime$の座標は$[ツ]$,点$\mathrm{B}^\prime$の座標は$[テ]$である.ただし,点$\mathrm{A}^\prime$は直線$\mathrm{OA}$上,点$\mathrm{B}^\prime$は直線$\mathrm{OB}$上にあるものとする.また,$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{C} \left( 9,\ \frac{9}{2} \right)$,$\mathrm{D}(3,\ 6)$を頂点とする$\triangle \mathrm{OCD}$に対し,$\overrightarrow{\mathrm{OQ}}=s^\prime \overrightarrow{\mathrm{OC}}+t^\prime \overrightarrow{\mathrm{OD}}$とする.点$\mathrm{Q}$の存在範囲が点$\mathrm{P}$の存在範囲と一致するとき,実数$s^\prime$と$t^\prime$の満たす条件は$[ト]$である.
(8)絶対値の記号を用いずに関数$f(x)=|3x^2-3x|-1$を表すと,$0 \leqq x \leqq 1$のとき$f(x)=[ナ]$となり,$x \leqq 0$,$1 \leqq x$のとき$f(x)=[ニ]$となる.したがって,定積分$\displaystyle \int_0^a f(x) \, dx$の値は,$0 \leqq a \leqq 1$のとき$[ヌ]$,$1 \leqq a$のとき$[ネ]$となる.
大阪工業大学 私立 大阪工業大学 2015年 第3問
数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{ka_n}{1+3a_n} (n=1,\ 2,\ 3,\ \cdots)$で定める.ただし,$k$は正の定数とする.このとき,次の空所を埋めよ.

(1)$k=1$のとき,$\displaystyle b_n=\frac{1}{a_n}$とおくと,数列$\{b_n\}$は初項$[ア]$,公差$[イ]$の等差数列となり,数列$\{a_n\}$の一般項は,$a_n=[ウ] (n=1,\ 2,\ 3,\ \cdots)$である.
(2)$k \neq 1$のとき,$\displaystyle c_n=\frac{1}{a_n}-\frac{3}{k-1}$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列となり,数列$\{a_n\}$の一般項は,$\displaystyle a_n=\frac{k-1}{3+[カ]} (n=1,\ 2,\ 3,\ \cdots)$である.
特に,$k=[キ]$のとき,すべての自然数$n$について$a_n$は一定の値である.
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle 3+\frac{n-2}{2}<\frac{n}{3}$を満たす最大の整数$n$を求めよ.
(2)$a,\ b,\ c$を定数とする.ただし$a \neq 0$とする.$2$次関数$y=ax^2+bx+c$のグラフが$3$点$(-1,\ 2)$,$(2,\ 1)$,$(3,\ -6)$を通るとき,$a,\ b,\ c$の値を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を使ってできる$4$桁の整数は全部で$[ア]$通りであり,その中で$2015$以下の整数は$[イ]$通りである.ただし,同じ数字は繰り返し使わないものとする.
(4)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{8}{\sin A}=\frac{7}{\sin B}=\frac{5}{\sin C}$である.このとき,$\angle \mathrm{B}$の大きさを求めよ.
(5)方程式$|x^2-2|=x$の解を求めよ.
日本女子大学 私立 日本女子大学 2015年 第3問
座標平面上の$2$つの放物線$y=4x^2+12x+2$と$y=x^2+2$をそれぞれ$C_1$と$C_2$とする.放物線$C_1$と$C_2$の両方に接し,傾きが正の直線を$\ell$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$の方程式を$y=ax+b$($a,\ b$は定数)とおく.$C_1$と$\ell$の接点の$x$座標と$C_2$と$\ell$の接点の$x$座標の小さい方を$s$,大きい方を$t$とする.連立不等式
\[ y \leqq 4x^2+12x+2,\quad y \leqq x^2+2,\quad y \geqq ax+b,\quad s \leqq x \leqq t \]
の表す領域の面積を求めよ.
日本女子大学 私立 日本女子大学 2015年 第2問
座標平面の原点を$\mathrm{O}$とする.放物線$y=(x-3)^2$と直線$y=mx$は$2$点$\mathrm{A}(\alpha,\ m \alpha)$,$\mathrm{B}(\beta,\ m \beta)$で交わり,点$\mathrm{A}$は線分$\mathrm{OB}$を$1:2$に内分するものとする.ただし,$m<0$とする.

(1)定数$m,\ \alpha,\ \beta$の値を求めよ.
(2)連立不等式
\[ y \leqq (x-3)^2,\quad y \geqq mx,\quad y \geqq 0,\quad \alpha \leqq x \leqq 3 \]
が表す領域の面積を求めよ.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2015年 第5問
$a$を実数の定数として$x$の$2$次関数
\[ f(x)=-3x^2+\left\{1-\int_{-1}^1 f(t) \, dt \right\}x+a \]
を考える.$x$が$3$から$4$まで変化するときの平均変化率が$4a$であるとき,以下の各問いに答えよ.

(1)定数$a$の値を求めよ.
(2)放物線$y=f(x)$と$x$軸とで囲まれる部分の面積$S$の値を求めよ.
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle \frac{1}{1-a}+\frac{1}{1+a}+\frac{2}{1+a^2}+\frac{4}{1+a^4}+\frac{8}{1+a^8}$を計算しなさい.

(2)$\displaystyle \frac{1}{\sqrt{5}-2}$の整数部分を$a$,小数部分を$b$とするとき,$a$と$b$の値を求めよ.

(3)$k$を正の定数とし,$2$つの放物線$y=-x^2+4x-2k$,$y=x^2+2kx+3k$をそれぞれ$C_1$,$C_2$とする.以下の問いに答えなさい.

(i) $C_1$の頂点の$y$座標が$1$であるとき,$k$の値を求めよ.
(ii) $C_2$が$x$軸と接するとき,$k$の値を求めよ.

(4)$\mathrm{AB}=5$,$\mathrm{AC}=4$,$\angle \mathrm{BAC}={60}^\circ$である$\triangle \mathrm{ABC}$がある.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めよ.
(5)男子$4$人,女子$3$人が一列に並ぶとき,女子$3$人が続く並び方は,$[ア]$通りであり,両端に男子が並ぶのは$[イ]$通りである.
天使大学 私立 天使大学 2015年 第1問
次の問いに答えなさい.

(1)方程式$27x^3-54x^2-12x+24=0$を解きなさい.
\[ x=\frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$}},\ \frac{\mkakko{$\mathrm{c}$}}{\mkakko{$\mathrm{d}$}},\ \mkakko{$\mathrm{e}$} \qquad \text{ただし} \mkakko{$\mathrm{a}$} \text{と} \mkakko{$\mathrm{b}$} \text{と} \mkakko{$\mathrm{d}$} \text{は正の数である.}\]
(2)$x,\ y,\ z$が$\displaystyle x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$をみたすとき,$(x+y)(y+z)(z+x)$の値を求めなさい.
\[ (x+y)(y+z)(z+x)=\mkakko{$\mathrm{f}$} \]
(3)関数$f(x)=|x+1|+|x-1|+|x-2|$の最小値$m$と,最小値をとるときの$x$の値を求めなさい.
\[ x=\mkakko{$\mathrm{g}$} \text{のとき} m=\mkakko{$\mathrm{h}$} \text{である.} \]
(4)$a$を正の定数とする.関数$y=x^2+ax-a^2-3a+1$の$-2a \leqq x \leqq 2a$での最大値$M$を最小にする定数$a$の値と$M$の最小値$m$の値を求めなさい.
\[ a=\frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$}} \text{のとき,} m=\frac{\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$}}{\mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}} \text{である.} \]
ただし$\mkakko{$\mathrm{j}$}$と$\mkakko{$\mathrm{n}$}$は正の数である.
京都女子大学 私立 京都女子大学 2015年 第1問
次の各問に答えよ.

(1)$2$つの直線$y=-x+2$と$y=\sqrt{3}x$のなす鋭角$\theta$を求めよ.
(2)$1$個のさいころを$5$回投げるとき,$1$の目が$2$回以上出る確率を求めよ.
(3)不等式$x^2-a^2x<(2a+3)x-2a^3-3a^2$($a$は定数)を$x$について解け.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。