タグ「定数」の検索結果

2ページ目:全1257問中11問~20問を表示)
東京工業大学 国立 東京工業大学 2016年 第1問
$a$を正の定数とし,放物線$\displaystyle y=\frac{x^2}{4}$を$C_1$とする.

(1)点$\mathrm{P}$が$C_1$上を動くとき,$\mathrm{P}$と点$\displaystyle \mathrm{Q} \left( 2a,\ \frac{a^2}{4}-2 \right)$の距離の最小値を求めよ.
(2)$\mathrm{Q}$を中心とする円$\displaystyle (x-2a)^2+\left( y-\frac{a^2}{4}+2 \right)^2=2a^2$を$C_2$とする.$\mathrm{P}$が$C_1$上を動き,点$\mathrm{R}$が$C_2$上を動くとき,$\mathrm{P}$と$\mathrm{R}$の距離の最小値を求めよ.
三重大学 国立 三重大学 2016年 第4問
$a$を正の定数とする.曲線$y=x^3-ax$を$C$とし,直線$y=b$を$\ell$とする.$C$と$\ell$がちょうど$2$点を共有しているとき,以下の問いに答えよ.

(1)$b$を$a$で表せ.
(2)$a=3$で$b$が正のとき,$C$と$\ell$で囲まれる部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$を
\[ f(x)=ax^2+bx+c \]
と定める.放物線$y=f(x)$の頂点の$x$座標を$x=1$とする.また,放物線$y=f(x)$と直線$y=x$の交点の$x$座標を$x=2$と$x=-3$とする.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$y=f(x)$と関数$y=|x|$のグラフの交点をすべて求めよ.
(3)放物線$y=f(x)$と関数$y=|x|$のグラフで囲まれた図形の面積$S$を求めよ.
金沢大学 国立 金沢大学 2016年 第1問
座標空間内に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 3,\ 0)$,$\mathrm{B}(0,\ 6,\ 0)$をとり,さらに$1<a<3$を満たす定数$a$に対して点$\mathrm{P}(t,\ ta,\ ta)$をとる.ただし,$t$は$t>0$の範囲を動くものとする.次の問いに答えよ.

(1)点$\mathrm{P}$から$xy$平面に垂線$\mathrm{PH}$を下ろす.点$\mathrm{H}$の座標を求めよ.
(2)点$\mathrm{H}$が線分$\mathrm{AB}$上にあるときの$t$の値を求め,そのときの点$\mathrm{H}$の座標を$a$を用いて表せ.



以下,点$\mathrm{H}$は線分$\mathrm{AB}$上にあるとする.


\mon[$(3)$] 点$\mathrm{M}$を線分$\mathrm{AB}$の中点とする.$\mathrm{AH}:\mathrm{HM}$の比の値$\displaystyle \frac{\mathrm{AH}}{\mathrm{HM}}$を求めよ.
\mon[$(4)$] 四面体$\mathrm{OPMH}$の体積が$2$となるような$a$の値を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第4問
各項が正の数である$2$つの数列$\{a_n\}$,$\{b_n\}$は

$a_1=1,\quad b_1=e,$
$\displaystyle a_{n+1}={a_n}^5 \cdot {b_n}^{3},\quad b_{n+1}=\frac{b_n}{a_n} \quad (n=1,\ 2,\ 3,\ \cdots)$

を満たすとする.ただし,$e$は自然対数の底とする.

(1)$c_n=\log a_n$,$d_n=\log b_n$とおく.ただし,対数は自然対数とする.
\[ c_{n+1}+\alpha d_{n+1}=\beta (c_n+\alpha d_n) \]
を満たす定数$\alpha,\ \beta$の組をすべて求めよ.
(2)数列$\{a_n\},\ \{b_n\}$の一般項を求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第3問
$a$を$0<a<1$を満たす定数とし,$x,\ y$が$xy^2=a^3$を満たすとする.$x>0$,$y>0$とするとき,次の問いに答えよ.

(1)$X=\log_a x$,$Y=\log_a y$とおくとき,$X$と$Y$の関係式を求めよ.
(2)$x,\ y$が$\log_a x \cdot \log_a y \geqq 1$を満たすとき,$y$のとり得る値の範囲を求めよ.
静岡大学 国立 静岡大学 2016年 第2問
$c$は$c>1$を満たす定数とする.数列$\{a_n\}$を次の条件によって定める.
\[ a_1=1,\quad c(a_{n+1})^n=(a_n)^{n+1},\quad a_n>0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の各問に答えよ.

(1)$\displaystyle b_n=\frac{1}{n} \log a_n$とする($n=1,\ 2,\ 3,\ \cdots$).ただし,$\log$は自然対数を表す.このとき,数列$\{b_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)和$\displaystyle \sum_{k=1}^n a_k$と$\displaystyle \sum_{k=1}^n k \log a_k$をそれぞれ求めよ.
静岡大学 国立 静岡大学 2016年 第1問
$c$は$c>1$を満たす定数とする.数列$\{a_n\}$を次の条件によって定める.
\[ a_1=1,\quad c(a_{n+1})^n=(a_n)^{n+1},\quad a_n>0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の各問に答えよ.

(1)$\displaystyle b_n=\frac{1}{n} \log a_n$とする($n=1,\ 2,\ 3,\ \cdots$).ただし,$\log$は自然対数を表す.このとき,数列$\{b_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)和$\displaystyle \sum_{k=1}^n a_k$と$\displaystyle \sum_{k=1}^n k \log a_k$をそれぞれ求めよ.
滋賀大学 国立 滋賀大学 2016年 第1問
$k$を定数とする.関数$f(x)=x^2-kx+3k-5$について,次の問いに答えよ.

(1)方程式$f(x)=0$が,異なる$2$つの実数解をもつような$k$の値の範囲を求めよ.
(2)方程式$f(x)=0$が,ともに$2$以下となる異なる$2$つの解をもつような$k$の値の範囲を求めよ.
(3)$1 \leqq x \leqq 4$における$f(x)$の最小値を$m(k)$とする.このとき,$0 \leqq k \leqq 10$における$m(k)$の最大値と最小値をそれぞれ求めよ.
滋賀大学 国立 滋賀大学 2016年 第4問
関数$f(x)=x^3-5x^2+6x+1$について,次の問いに答えよ.

(1)$x \geqq 0$のとき,不等式$f(x)>0$が成り立つことを証明せよ.
(2)$a$を$0$以上の定数とし,曲線$y=f(x)$と$x$軸および$2$直線$x=a$,$x=a+1$で囲まれた図形の面積を$S(a)$とする.$a$を変化させたとき,$S(a)$の最小値とそのときの$a$の値を求めよ.
スポンサーリンク

「定数」とは・・・

 まだこのタグの説明は執筆されていません。