タグ「完成」の検索結果

2ページ目:全23問中11問~20問を表示)
西南学院大学 私立 西南学院大学 2014年 第1問
$i$を虚数単位として,$\displaystyle z=\frac{2-i}{1+i}$とするとき,以下の式を完成させよ.


(1)$\displaystyle z=\frac{[ア]}{[イ]}-\frac{[ウ]}{[イ]}i$

(2)$\displaystyle \frac{1}{z}=-\frac{[エ]}{[オ]}z+\frac{[カ]}{[オ]}$

(3)$\displaystyle z^4=-[キ]z+\frac{[クケ]}{[コ]}$
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$1$から$13$までの整数が$1$つずつ書かれた$13$枚のカードの中から$3$枚を選ぶとき,偶数が書かれたカードが$2$枚以上含まれる選び方は$[あ]$通りであり,$11$以上の数が書かれたカードが少なくとも$1$枚含まれる選び方は$[い]$通りである.
(2)$\alpha=2+\sqrt{5}$とするとき,$\alpha$を解とし,整数を係数とする$2$次方程式$x^2+a_1x+b_1=0$を求めると$a_1=[う]$,$b_1=[え]$である.また自然数$n$に対して,$\alpha^n$を解とし,整数を係数とする$2$次方程式を$x^2+a_nx+b_n=0$とすると,$b_n=[お]$であり,$a_n^2+a_{2n}=[か]$である.
(3)実数$m$に対して
\[ A(m)=\int_0^1 x(e^x-m)^2 \, dx \]
とおくと,関数$A(m)$は$m=[き]$のとき最小値$[く]$をとる.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の座標$1,\ 2,\ 3$で表される位置に置かれた点に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
操作$\mathrm{T}$

\mon[$(\mathrm{a})$] 点が$1$または$2$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で正の方向へ$1$だけ動かす.
\mon[$(\mathrm{b})$] 点が$3$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で負の方向へ$1$だけ動かす.

\end{screen}
以下,$n$を自然数とする.


(1)$1$の位置に置かれている点$\mathrm{A}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{A}$が$1$の位置に置かれている確率を$p_n$,$2$の位置に置かれている確率を$q_n$とすると,$p_n=[あ]$,$q_n=[い]$である.
(2)$2$の位置に置かれている点$\mathrm{B}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{B}$が$2$の位置に置かれている確率を$q_n^\prime$とすると,$q_n^\prime=[う]$である.
(3)$2$点$\mathrm{C}$,$\mathrm{D}$がともに$1$の位置に置かれているとする.はじめに$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うとし,点$\mathrm{C}$が$1$の位置を離れた次の回からは$\mathrm{O}$君が加わって,$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うのと同時に,$\mathrm{K}$君とは独立に,$\mathrm{O}$君が点$\mathrm{D}$に対し操作$\mathrm{T}$を繰り返し行うとする.

$(3-1)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がともに$2$の位置に置かれている確率を$r_n$とすると$r_1=0$,$r_2=[え]$であり,一般に$n \geqq 2$に対して$r_n=[お]$である.
$(3-2)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がどちらも$2$の位置に置かれていない確率を$s_n$とすると$s_1=[か]$である.また一般に$n \geqq 2$に対して$s_n-r_n=[き]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
以下の文章の空欄に適切な式を入れて文章を完成させなさい.また$(3) \ (ⅱ)$に答えなさい.

放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$を$C$で表す.$C$上にない点$\displaystyle \mathrm{P}(X,\ Y) \left( \text{ただし} Y<\frac{1}{2}X^2+\frac{1}{2} \right)$から$C$に引いた$2$本の接線のうち,接点の$x$座標が小さい方を$\ell_1$とし,大きい方を$\ell_2$とする.また$\ell_1$,$\ell_2$と$C$との接点をそれぞれ$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.


(1)接線$\ell_1,\ \ell_2$の傾き$m_1,\ m_2$はそれぞれ$m_1=[あ]$,$m_2=[い]$である.
(2)$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の法線をそれぞれ$L_1$,$L_2$とするとき,$L_1$と$L_2$の交点$\mathrm{R}$の座標を$X,\ Y$を用いた式で表すと
\[ \left( [う],\ [え] \right) \]
である.
(3)$\angle \mathrm{Q}_1 \mathrm{PQ}_2$が一定値$\alpha$(ただし$0<\alpha<\pi$)となるような点$\mathrm{P}(X,\ Y)$の軌跡を$S(\alpha)$で表す.

(i) $\displaystyle S \left( \frac{\pi}{2} \right)$の方程式は$[お]$である.

(ii) $\displaystyle \alpha \neq \frac{\pi}{2}$のときに$S(\alpha)$を求めなさい.

(4)点$\mathrm{P}(X,\ Y)$が$\displaystyle S \left( \frac{\pi}{2} \right)$の上を動くとき,点$\mathrm{R}$が描く軌跡の方程式は$[か]$である.
西南学院大学 私立 西南学院大学 2014年 第1問
$\displaystyle x+\frac{1}{x}=\sqrt{5}$のとき,以下の式を完成させよ.

(1)$\displaystyle x^2+\frac{1}{x^2}=[ア]$

(2)$\displaystyle x^3+\frac{1}{x^3}=[イ] \sqrt{[ウ]}$

(3)$\displaystyle x^5+\frac{1}{x^5}=[エ] \sqrt{[オ]}$
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
\setstretch{1.4}
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人が協力して仕事を完成した場合は$120$万円の報酬をもらえる.しかし$\mathrm{A}$,$\mathrm{B}$の$2$人が協力して仕事を完成した場合は$60$万円の報酬に,$\mathrm{A}$,$\mathrm{C}$の$2$人が協力して仕事を完成した場合は$20$万円の報酬に減額される.さらに$\mathrm{B}$,$\mathrm{C}$の$2$人が協力して仕事を完成した場合や各人が単独で仕事を完成した場合は報酬はもらえない.\\
\quad 実際は$3$人が協力して仕事を完成し,$120$万円の報酬を得たが,この報酬を$3$者間でいかに配分したらよいかを考えた.\\
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$各人の配分額をそれぞれ$x,\ y,\ z$とすれば
\[ x+y+z=120,\quad x\geq 0,\quad y \geq 0,\quad z \geq 0 \]
である.たとえば$(x,\ y,\ z)=(40,\ 10,\ 70)$としてみる.もし$\mathrm{A}$,$\mathrm{B}$の$2$人が仕事を完成したとすれば$60$万円の報酬であるが,この配分では$\mathrm{A}$,$\mathrm{B}$は$50$万円の報酬を得る.したがって$\mathrm{A}$,$\mathrm{B}$にとっては$60-50=10$(万円)の不満である.そして$\mathrm{A}$,$\mathrm{C}$にとっては$20-110=-90$の不満である.$\mathrm{B}$,$\mathrm{C}$にとっては$-[$13$][$14$]$の不満,$\mathrm{A}$にとっては$-[$15$][$16$]$の不満,$\mathrm{B}$にとっては$-[$17$][$18$]$の不満,$\mathrm{C}$にとっては$-[$19$][$20$]$の不満である.この場合,$2$人あるいは単独で仕事を完成した場合と比較すると最大の不満は$10$,$2$番目に大きな不満は$-[$21$][$22$]$,$3$番目に大きな不満は$-[$23$][$24$]$である.\\
\quad さて配分$(x,\ y,\ z)$を考える方針として,各配分に対して,$2$人あるいは単独で仕事を完成した場合と比較して上述のように不満を計算する.そして最大の不満がより小さい配分が好ましいとする.ただし最大の不満が同じ場合は$2$番目に大きな不満,それが同じであれば$3$番目の不満といった具合に比較する.\\
\quad もっとも好ましい配分に対する最大の不満を$M$とすると,$M=-[$25$][$26$]$であることが分かる.最大の不満が$M$である配分に対して$2$番目に大きな不満を$M^{\prime}$とすると,$M^{\prime}=-[$27$][$28$]$であることが分かる.以上のことからもっとも好ましい配分は
\[ x=[$29$][$30$],\quad y=[$31$][$32$],\quad z=[$33$][$34$] \]
である.
\setstretch{1.3}
明治大学 私立 明治大学 2012年 第4問
次の各設問の[16]と[17]の空欄に数字を入れよ.また,[\phantom{ア]}には文字式を入れ完成させよ.\\
\quad 条件$\displaystyle a_1 = 1,\ a_{n+1}=\frac{9a_n}{3a_n+5} \quad (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$がある.

(1)$\displaystyle b_n=\frac{1}{a_n}$とし,$b_{n+1}-q=p(b_n-q)$と変形すると,実数$p,\ q$はそれぞれ$p = [16],\ q=[17]$である.
(2)数列$\{a_n\}$の一般項は$a_n = [\phantom{ア]}$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$xy$平面上で点$\mathrm{P}$は$x$軸上に,点$\mathrm{Q}$は$y$軸上に置かれ,点$\mathrm{P}$の$x$座標と点$\mathrm{Q}$の$y$座標はそれぞれ$-2$以上$2$以下の整数であるとする.点$\mathrm{P}$,$\mathrm{Q}$に対して次の操作を考える.
\begin{screen}
{\bf 操作} \\
点$\mathrm{P}$の座標が$(i,\ 0)$,点$\mathrm{Q}$の座標が$(0,\ j)$であるとき次の規則に従って$2$点$\mathrm{P}$,$\mathrm{Q}$を互いに独立に同時に処理する.

\mon[$(\mathrm{P}1)$] $-1 \leqq i \leqq 1$ならば点$\mathrm{P}$を$(i+1,\ 0)$または$(i-1,\ 0)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{P}2)$] $i=-2$ならば点$\mathrm{P}$を必ず$(-1,\ 0)$に移す.
\mon[$(\mathrm{P}3)$] $i=2$ならば点$\mathrm{P}$をそのままにしておく.
\mon[$(\mathrm{Q}1)$] $-1 \leqq j \leqq 1$ならば点$\mathrm{Q}$を$(0,\ j+1)$または$(0,\ j-1)$のどちらかに確率$\displaystyle \frac{1}{2}$ずつで移す.
\mon[$(\mathrm{Q}2)$] $j=-2$ならば点$\mathrm{Q}$を必ず$(0,\ -1)$に移す.
\mon[$(\mathrm{Q}3)$] $j=2$ならば点$\mathrm{Q}$をそのままにしておく.

\end{screen}
さて,$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている状態から始め,上の操作を$3$回繰り返し行う.

(1)$3$回の操作の後,点$\mathrm{P}$が$(1,\ 0)$に置かれている確率は$[あ]$であり,$(-1,\ 0)$に置かれている確率は$[い]$である.
(2)$xy$平面上で不等式$y>x$の表す領域を$A$,不等式$y>-x$の表す領域を$B$とする.各回の操作後に点$\mathrm{P}$が常に$A \cup B$内に置かれているという事象を$U$とし,各回の操作後に点$\mathrm{Q}$が常に$A \cup B$内に置かれているという事象を$V$とすると,事象$U \cup V$の確率は$[う]$である.
$xy$平面上で$2$点$\mathrm{P}$,$\mathrm{Q}$を結ぶ線分の長さを$\mathrm{PQ}$とする.ただし$2$点$\mathrm{P}$,$\mathrm{Q}$がともに$(0,\ 0)$に置かれている場合は$\mathrm{PQ}=0$とする.
(3)$3$回の操作を通じてちょうど$1$回だけ$\mathrm{PQ}=\sqrt{2}$となる確率は$[え]$である.
(4)$3$回の操作を通じた$\mathrm{PQ}$の最大値の期待値は$[お]$である.
スポンサーリンク

「完成」とは・・・

 まだこのタグの説明は執筆されていません。