タグ「存在」の検索結果

31ページ目:全303問中301問~310問を表示)
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
負でない実数を$a$とする.$xy$平面上で$\displaystyle 0 \leqq x \leqq a,\ 0 \leqq y \leqq \frac{1}{1+x}$を満たす領域を$A$とし,$A$を$x$軸のまわりに$1$回転してできる立体の体積を$V_1$,$y$軸のまわりに$1$回転してできる立体の体積を$V_2$とする.次の問いに答えよ.

(1)$V_1$を求めよ.
(2)$V_2$を求めよ.
(3)$V_1-V_2$が最大となるときの$a$の値を$p$とおく.$p$を求め,$p<1$を示せ.
(4)$p<a<1$において$V_1=V_2$となる$a$が存在することを示せ.ただし,$\log 2<0.7$を使用してもよい.
大阪府立大学 公立 大阪府立大学 2010年 第3問
単位行列$E$の実数倍ではない行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を考える.$A$で表わされる$xy$平面上の移動を$f$とする.

(1)$A^2=kE$を満たす実数$k$が存在するための必要十分条件は,$a+d=0$であることを示せ.
(2)$a+d=0$のとき,原点Oとは異なる点Pで,$f(P)$が直線OP上にあるものが存在すれば,$a^2+bc \geqq 0$であることを示せ.
(3)$a+d=0$かつ$a^2+bc \geqq 0$であるとする.このとき$\lambda=\sqrt{a^2+bc}$とおけば,$(A-\lambda E)(A+\lambda E)=O$が成り立つことを示せ.ただし,$O$は零行列とする.
(4)(3)の仮定のもとで,$\lambda=\sqrt{a^2+bc}$とおく.原点Oとは異なる点Pで,$\text{Q}=f(P)$とすれば,$\overrightarrow{\mathrm{OQ}}=\lambda \overrightarrow{\mathrm{OP}}$となるものが存在することを示せ.
京都府立大学 公立 京都府立大学 2010年 第4問
$A$を成分が実数である2次の正方行列,$E$を2次の単位行列とする.数列$\{a_n\}$を漸化式
\[ a_1=1,\quad a_{n+1}=a_n+2^n,\quad (n=1,\ 2,\ \cdots) \]
によって定める.$\displaystyle b_n=\sum_{k=1}^n a_k$とおく.また,座標平面上の点P$_n(x_n,\ y_n)$を
\[ \biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr) = \biggl( \begin{array}{c}
1 \\
1
\end{array} \biggr),\quad \biggl( \begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array} \biggr)=A^{b_n}\biggl( \begin{array}{c}
x_1 \\
y_1
\end{array} \biggr),\quad (n=1,\ 2,\ \cdots) \]
によって定める.以下の問いに答えよ.

(1)数列$\{b_n\}$の一般項を求めよ.
(2)$A$は$\sqrt{2}A^2=(1+\sqrt{3})A-\sqrt{2}E$を満たすとする.$A$の逆行列$A^{-1}$が存在することを示せ.
(3)(2),かつ,$\displaystyle x_2=\sqrt{\frac{1}{2}},\ y_2=\sqrt{\frac{3}{2}}$のとき,$x_3,\ y_3$を求めよ.ただし,$A^{-1}$が存在することを証明なしに用いてよい.
(4)(3)のとき,$x_{n+1}=x_1,\ y_{n+1}=y_1$となる最小の自然数$n$を求めよ.
スポンサーリンク

「存在」とは・・・

 まだこのタグの説明は執筆されていません。