タグ「奇数」の検索結果

5ページ目:全170問中41問~50問を表示)
九州歯科大学 公立 九州歯科大学 2015年 第1問
次の問いに答えよ.

(1)$5 \tan \theta=2$のとき,$\displaystyle A=\frac{\sin^4 \theta-\cos^4 \theta}{12 \sin \theta \cos \theta+6}$の値を求めよ.
(2)$1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の$7$個の数字がある.これらの数字を並べて$7$桁の整数を作る.ただし,同じ数字は$2$度以上使わないものとする.このとき,偶数が隣り合わないような$7$桁の整数は全部で$J$個できる.また,これらの$J$個の中で奇数となるものは$K$個できる.$J$と$K$の値を求めよ.
(3)$m$を自然数とする.関数$f(x)=(x-2) \sqrt{x^4(x+1)^2}$に対して,定積分$\displaystyle B=m \int_{-2}^2 f(x) \, dx$の値が整数となる$m$の最小値$M$の値を求めよ.また,このときの$B$の値を求めよ.
会津大学 公立 会津大学 2015年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_0^1 \log (2x+1) \, dx=[イ]$

(ii) $\displaystyle \int_0^{\frac{\pi}{2}} \cos^3 x \, dx=[ロ]$

(iii) $\displaystyle \int_0^\pi |\sin 2x| \, dx=[ハ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 5}+\cdots +\frac{1}{n(n+2)} \right)=[ニ] \]
(3)方程式$\displaystyle \log_2 (x-10)=3+\log_2 \frac{3}{x}$の解は$x=[ホ]$である.
(4)$0 \leqq x<2\pi$において,$-\sin x+\sqrt{3} \cos x$は$x=[ヘ]$のとき,最大値$[ト]$をとる.
(5)以下の文章に「必要条件である」,「十分条件である」,「必要十分条件である」,「必要条件でも十分条件でもない」のうち最も適するものを入れよ.ただし,$n$は自然数とする.

(i) $n$が$6$の倍数であることは,$n$が$3$の倍数であるための$[チ]$.
(ii) $n$が奇数であることは,$n^2$が奇数であるための$[リ]$.
北九州市立大学 公立 北九州市立大学 2015年 第1問
自然数の列を区切って,次のように群に分ける.第$1$群に入る項の個数は$1$個である.また,第$n+1$群に入る項の個数は第$n$群の最後の項と同じ数とする.ただし,$n$は自然数である.また,群に入る項が$1$個の場合は,その数が最初の項でありかつ最後の項であるとする.
\[ |\ 1 \ |\ 2 \ |\ 3,\ 4 \ |\ 5,\ 6,\ 7,\ 8 \ |\ 9,\cdots \]
第$n$群の最後の項を$b_n$とおき,第$n$群に入る項の個数を$c_n$とおく.以下の問題に答えよ.

(1)項$b_3,\ b_4,\ b_5$を求めよ.また,項$b_n$を$n$を用いて表せ.
(2)項数$c_n$を$n$を用いて表せ.
(3)$1000$は第何群の第何項目であるかを求めよ.
(4)$n$が$3$以上の奇数のとき,第$n$群の最初の項は$3$の倍数であることを示せ.
(5)$n$が$3$以上の奇数のとき,第$n$群または第$n+1$群に含まれる項のうち$3$の倍数である項の個数を$n$を用いて表せ.
横浜国立大学 国立 横浜国立大学 2014年 第2問
$r$を$0<r<1$をみたす定数とする.次の問いに答えよ.

(1)数列$\{a_n\}$を$\displaystyle a_n=\left[ \frac{n}{3} \right]$で定める.ただし,実数$x$に対して,$[x]$は$l \leqq x<l+1$をみたす整数$l$を表す.このとき,
\[ \lim_{n \to \infty} \sum_{k=1}^{3n} (-1)^{k-1}r^{a_k} \]
を求めよ.
(2)数列$\{b_n\}$を
\[ \begin{array}{ll}
n \text{が奇数のとき} & b_n=n \\
n \text{が偶数のとき} & b_n=2n
\end{array} \]
で定める.このとき,
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} (-1)^{k-1}r^{\frac{b_k}{n}} \]
を求めよ.
神戸大学 国立 神戸大学 2014年 第4問
$n$を自然数とする.$1$から$2n$までの番号をつけた$2n$枚のカードを袋に入れ,よくかき混ぜて$n$枚を取り出し,取り出した$n$枚のカードの数字の合計を$A$,残された$n$枚のカードの数字の合計を$B$とする.このとき,以下の問に答えよ.

(1)$n$が奇数のとき,$A$と$B$が等しくないことを示せ.
(2)$n$が偶数のとき,$A$と$B$の差は偶数であることを示せ.
(3)$n=4$のとき,$A$と$B$が等しい確率を求めよ.
東京工業大学 国立 東京工業大学 2014年 第1問
$3$以上の奇数$n$に対して,$a_n$と$b_n$を次のように定める.
\[ a_n=\frac{1}{6} \sum_{k=1}^{n-1} (k-1)k(k+1),\quad b_n=\frac{n^2-1}{8} \]

(1)$a_n$と$b_n$はどちらも整数であることを示せ.
(2)$a_n-b_n$は$4$の倍数であることを示せ.
千葉大学 国立 千葉大学 2014年 第3問
$p$は奇数である素数とし,$N=(p+1)(p+3)(p+5)$とおく.

(1)$N$は$48$の倍数であることを示せ.
(2)$N$が$144$の倍数になるような$p$の値を,小さい順に$5$つ求めよ.
千葉大学 国立 千葉大学 2014年 第6問
自然数$n$に対して,和
\[ S_n=1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \]
を考える.

(1)各自然数$n$に対して$2^k \leqq n$をみたす最大の整数$k$を$f(n)$で表すとき,$2$つの奇数$a_n,\ b_n$が存在して
\[ S_n=\frac{a_n}{2^{f(n)}b_n} \]
と表されることを示せ.
(2)$n \geqq 2$のとき$S_n$は整数にならないことを示せ.
(3)さらに,自然数$m,\ n (m<n)$に対して,和
\[ S_{m,n}=\frac{1}{m}+\frac{1}{m+1}+\cdots +\frac{1}{n} \]
を考える.$S_{m,n}$はどんな$m,\ n (m<n)$に対しても整数にならないことを示せ.
熊本大学 国立 熊本大学 2014年 第3問
$r$を$r>1$である実数とし,数列$\{a_n\}$を次で定める.
\[ a_1=1,\quad a_{n+1}=\frac{a_n+r^2}{a_n+1} \]
以下の問いに答えよ.

(1)$n$が奇数のとき$a_n<r$,$n$が偶数のとき$a_n>r$であることを示せ.
(2)任意の自然数$n$について,$a_{n+2}-r$を$a_n$と$r$を用いて表せ.
(3)任意の自然数$n$について,次の不等式を示せ.
\[ \frac{a_{2n+2}-r}{a_{2n}-r}<\left( \frac{r-1}{r+1} \right)^2 \]
(4)$\displaystyle \lim_{n \to \infty}a_{2n}$および$\displaystyle \lim_{n \to \infty}a_{2n+1}$を求めよ.
奈良教育大学 国立 奈良教育大学 2014年 第5問
$n$を正の整数とする.次の命題を証明せよ.

(1)$n^2$が奇数ならば,$n$は奇数である.
(2)$n^3$が$5$で割り切れるならば,$n$は$5$で割り切れる.
スポンサーリンク

「奇数」とは・・・

 まだこのタグの説明は執筆されていません。