タグ「奇数」の検索結果

12ページ目:全170問中111問~120問を表示)
上智大学 私立 上智大学 2012年 第3問
大きさの同じ$N$個の正方形を,図$1$のように左端からつめて高さを$3$段までに並べる.このとき,各段の正方形の数はその$1$つ下の段の正方形の数以下とする.例えば,$N=4$の場合,図$2$のように$4$通りの並べ方がある.

(1)上のような並べ方は,$N=5$のとき$[ノ]$通り,$N=6$のとき$[ハ]$通り,$N=7$のとき$[ヒ]$通りである.
(2)高さが$2$段までの並べ方は,

$N$が偶数のとき,$\displaystyle \left( \frac{[フ]}{[ヘ]}N+[ホ] \right)$通り,

$N$が奇数のとき,$\displaystyle \left( \frac{[マ]}{[ミ]}N+\frac{[ム]}{[メ]} \right)$通りである.

(3)$N=6n$($n$は自然数)のとき,高さが$3$段までの並べ方を考える.$3$段目の正方形が$m$個であるような並べ方が$a_m$通りあるとする.図$1$は$N=12$,$m=3$のときの並べ方の一例である.
$m$が偶数のとき,
\[ a_m=[モ]n+\frac{[ヤ]}{[ユ]}m+[ヨ] \]
$m$が奇数のとき,
\[ a_m=[ラ]n+\frac{[リ]}{[ル]}m+\frac{[レ]}{[ロ]} \]
である.したがって,$N=6n$のとき,高さが$3$段までの並べ方は全部で
\[ [ワ]n^2+[ヲ]n+[ン] \]
通りである.

(図は省略)
上智大学 私立 上智大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{OAB}$に対し,
\[ \overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}},\quad s \geqq 0,\quad t \geqq 0 \]
とする.また,$\triangle \mathrm{OAB}$の面積を$S$とする.

(i) $1 \leqq s+t \leqq 3$のとき,点$\mathrm{P}$の存在しうる領域の面積は$S$の$[ア]$倍である.
(ii) $1 \leqq s+2t \leqq 3$のとき,点$\mathrm{P}$の存在しうる領域の面積は$S$の$[イ]$倍である.

(2)$(\sqrt{2})^n$は$n$が奇数のとき無理数である.より一般に,$2$以上の整数$k$に対し,$(\sqrt[k]{2})^n$は$n$が$k$の倍数でないとき無理数である.したがって,$2$以上の整数$k$に対し,
\[ \left( \sqrt{2}x+\sqrt[k]{2} \right)^{100} \]
を展開して得られる$x$の多項式において,

(i) $x^{100}$の係数は$2$の$[ウ]$乗,
(ii) $n=0,\ 1,\ \cdots,\ 100$に対し,$x^n$の係数が整数となるような$n$の個数は

$k=2$のとき$[エ]$個
$k=3$のとき$[オ]$個
$k=5$のとき$[カ]$個
$k=7$のとき$[キ]$個
$k=51$のとき$[ク]$個

である.
福岡大学 私立 福岡大学 2012年 第8問
奇数の列を,次のように第$1$群,第$2$群,第$3$群,$\cdots$に分ける.
\[ 1,\ \bigg| \ 3,\ 5,\ 7,\ \bigg| \ 9,\ 11,\ 13,\ 15,\ 17,\ \bigg| \ \cdots \]
このとき,$2013$を第$n$群の$m$番目の奇数とすると,$(n,\ m)=[ ]$であり,$2013$が属する第$n$群の奇数の総和は$[ ]$である.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$a,\ b$を実数とする.$2$次方程式$x^2+ax+b=0$の$1$つの解$\alpha$が$1-\sqrt{3}i$のとき,$a=[$1$]$,$b=[$2$]$となる.もう$1$つの解を$\beta$とするとき,$\alpha-2$,$\beta-2$を解とし,$x^2$の係数が$1$である$2$次方程式は$x^2+[$3$]x+[$4$]=0$となる.
(2)$a=\sqrt{3}$のとき,$|a-2|+|a+3|$の値は$[$5$]$である.また,方程式$|x+1|=4$の解は$[$6$]$である.
(3)$2+\sqrt{2}$の整数部分を$a$,小数部分を$b$とするとき,$\displaystyle 2a^2-\left( b^3+\frac{1}{b^3} \right)$の値は$[$7$]$である.
(4)$1$個のさいころを投げて,出た目が奇数なら$2$ポイント,偶数なら$4$ポイント獲得できるゲームがある.$1$回投げて獲得できるポイントの期待値は$[$8$]$である.また,さいころを$3$回投げたとき,獲得したポイントの合計が$12$である確率は$[$9$]$であり,$10$以上である確率は$[$10$]$である.
(5)放物線$y=x^3-3x^2+2$上の点$(1,\ 0)$における接線の方程式は$[$11$]$である.
津田塾大学 私立 津田塾大学 2012年 第2問
$p$を奇数,$q$を偶数とし,方程式$x^2-px+q=0$の解を$\alpha,\ \beta$とおく.

(1)$a_n=\alpha^n+\beta^n (n=1,\ 2,\ 3,\ \cdots)$とするとき,$a_{n+2}$を$a_{n+1},\ a_n,\ p,\ q$を用いて表せ.
(2)$a_n$はすべて奇数となることを示せ.
津田塾大学 私立 津田塾大学 2012年 第2問
次の問に答えよ.

(1)奇数の平方は$8$で割ると$1$余ることを示せ.
(2)$11,\ 111,\ 1111,\ \cdots$のように数字$1$のみが並ぶ$2$桁以上の整数は平方数ではないことを示せ.
酪農学園大学 私立 酪農学園大学 2012年 第3問
袋の中に$1$から$5$の番号のついた赤玉と,$1$から$10$の番号のついた白玉が,それぞれ$1$個ずつ入っている.この袋から同時に$2$個の玉を取り出す試行を考える.$A$は少なくとも$1$個が赤玉である事象,$B$は番号の和が奇数となる事象とする.事象$X$の起こる確率を$P(X)$とするとき,積事象$A \cap B$の起こる確率$P(A \cap B)$,和事象$A \cup B$の起こる確率$P(A \cup B)$を求めたい.次の文章中の空欄に値を入れよ.

「玉の取り出し方は全部で$[$1$]$通りある.
$A$の余事象$\overline{A}$の起こる場合の数は$[$2$]$通りだから,$A$の起こる確率は,
\[ P(A)=1-P(\overline{A})=[$3$] \]
となる.
一方,$B$の起こる場合の数は,赤玉$1$個と白玉$1$個を取り出すときは$[$4$]$通り,赤玉$2$個を取り出すときは$[$5$]$通り,白玉$2$個を取り出すときは$[$6$]$通りある.
よって,$B$の起こる確率は,
\[ P(B)=[$7$] \]
となる.したがって,$A \cap B$の起こる確率は,
\[ P(A \cap B)=[$8$] \]
となり,$A \cup B$の起こる確率は,
\[ P(A \cup B)=[$9$] \]
となる.」
東京女子大学 私立 東京女子大学 2012年 第5問
$m$を自然数とする.$m^2-1$が$8$で割り切れるための必要十分条件は,$m$が奇数であることを示せ.
大阪薬科大学 私立 大阪薬科大学 2012年 第2問
次の問いに答えなさい.多項式$P(x)={(1+x)}^{24}$を考える.

(1)$P(x)$の$x^2$の係数は$[$\mathrm{E]$}$である.
(2)$\comb{24}{0}-\comb{24}{1}+\comb{24}{2}-\comb{24}{3}+\cdots +\comb{24}{22}-\comb{24}{23}+\comb{24}{24}=[$\mathrm{F]$}$である.
(3)$\displaystyle Q(x)=\frac{1}{2} \left( P(x)+P(-x) \right)$とする.このとき,$Q(x)$は$P(x)$の
$\big\{$ (ア)奇数次数の項からなる. (イ)偶数次数の項からなる. (ウ)奇数次数と偶数次数の項からなる. $\bigr\}$
(ア),(イ),(ウ)の中から最も適切なものを選び,その記号を$[$\mathrm{G]$}$に記しなさい.
(4)方程式$x^3=1$の$3$つの解を$1,\ \alpha,\ \beta$とする.

(i) ${(1-\alpha)}^6=[$\mathrm{H]$}$である.
(ii) $\alpha^2-\beta=[$\mathrm{I]$}$である.
(iii) $\displaystyle \sum_{k=0}^{12} \comb{24}{2k} \beta^k$の値を$[い]$で求めなさい.
なお,必要ならば$3^{12}=531441$を使ってよい.
名古屋市立大学 公立 名古屋市立大学 2012年 第2問
図のような縦横同数の格子の全ての格子点上に,白または黒の石を置く.縦または横に隣り合う石の色が同じならその間に実線を,異なっていれば点線を引き,実線の数を数える操作を行う.図$1$の実線の数は$2$本,図$2$では$5$本である.
(図は省略)

(1)$2 \times 2$の格子点に$4$つの石を置くとき,石の置き方にかかわらず,実線の数は偶数になることを示せ.
(2)$3 \times 3$の格子点に$9$つの石を置くとき,実線の数が奇数になるための必要十分条件を示せ.ただし,(1)の結果を使ってもよい.
スポンサーリンク

「奇数」とは・・・

 まだこのタグの説明は執筆されていません。