タグ「大小」の検索結果

3ページ目:全77問中21問~30問を表示)
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$1$次不等式$\displaystyle \frac{7+4x}{3} \geqq \frac{x+1}{2}-x$の解は$[$1$]$である.
(2)$\displaystyle \frac{1}{2+\sqrt{3}-\sqrt{5}}$の分母を有理化すると$[$2$]$となる.
(3)$A,\ B,\ C$を定数とする.$\displaystyle \frac{x^2+2x+17}{x^3-x^2-5x-3}=\frac{A}{(x+1)^2}+\frac{B}{x+1}+\frac{C}{x-3}$が$x$についての恒等式であるとき,$A=[$3$]$,$B=[$4$]$,$C=[$5$]$である.
(4)実数$a$に対して,$a$以下の整数で最大のものを$[a]$で表す.このとき,$[\log_2 7]=[$6$]$,$\displaystyle [\log_3 \frac{1}{25}]=[$7$]$である.
(5)大小$2$個のさいころを同時に投げる.このとき,目の和が$9$以下になる確率は$[$8$]$であり,目の積が$9$以下になる確率は$[$9$]$である.
(6)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とし,頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線$\mathrm{AH}$を下ろすとする.このとき,線分$\mathrm{AH}$の長さは$[$10$]$であり,$\triangle \mathrm{ABC}$の面積は$[$11$]$である.
学習院大学 私立 学習院大学 2014年 第1問
大小$2$つのコインを投げたとき,次の(ルール)に従って,平面上の点$\mathrm{P}$,$\mathrm{Q}$を動かす.


\mon[(ルール)] $\mathrm{P}$が$(a,\ b)$にいるとき,大きなコインが表なら$\mathrm{P}$を$(a+1,\ b)$に動かし,裏なら$(a,\ b+1)$に動かす.また,$\mathrm{Q}$が$(c,\ d)$にいるとき,小さいコインが表なら$\mathrm{Q}$を$(c-1,\ d)$に動かし,裏なら$(c,\ d-1)$に動かす.

最初に,$\mathrm{P}$は$(0,\ 0)$にいて,$\mathrm{Q}$は$(4,\ 4)$にいるとする.この状態から,大小$2$つのコインを同時に投げて(ルール)に従って$\mathrm{P}$,$\mathrm{Q}$を動かす試行を$4$回繰り返したときの$\mathrm{P}$,$\mathrm{Q}$の位置について,次の問いに答えよ.ただし,大小どちらのコインについても,表と裏の出る確率はともに$\displaystyle \frac{1}{2}$に等しいとする.

(1)$\mathrm{P}$が$(1,\ 3)$にいる確率を求めよ.
(2)$\mathrm{P}$と$\mathrm{Q}$が同じ点にいる確率を求めよ.
首都大学東京 公立 首都大学東京 2014年 第4問
大小二つのさいころを同時にふって,出た目の値をそれぞれ$a,\ b$とする.領域
\[ y \geqq -\frac{x}{2}+a \quad \text{かつ} \quad (x-b)^2+(y-b)^2 \leqq b^2 \]
の面積を$S$とする.ただし,空集合の面積は$0$とする.以下の問いに答えなさい.

(1)$\displaystyle S=\frac{\pi b^2}{2}$となる確率$p_1$を求めなさい.
(2)$S=0$となる確率$p_2$を求めなさい.
北九州市立大学 公立 北九州市立大学 2014年 第1問
以下の問いの空欄$[ア]$~$[ス]$に適する数値,式などを記せ.

(1)直線$\displaystyle y=\frac{x}{\sqrt{3}}+1$と$x$軸の正の向きとのなす角は$[ア]$であり,この直線と放物線$\displaystyle y=\frac{x^2}{4}$の共有点の座標は$([イ],\ [ウ])$と$([エ],\ [オ])$である.
(2)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{\sin A}{9}=\frac{\sin B}{7}=\frac{\sin C}{5}$が成り立つとき,この三角形の最も大きい角の余弦の値は$[カ]$である.この三角形の最も大きい辺の長さを$9$とすると,三角形の面積は$[キ]$である.
(3)同じ$2$つの箱と,同じ$4$つの球がある.$2$つの箱にすべての球を分配するときの組み合わせは$[ク]$通りである.また,大小の$2$つの箱と,$1$から$4$までの数が書かれた$4$つの球があるとき,すべての球を分配するときの組み合わせは$[ケ]$通りである.ただし,片方の箱のみに球が入っている場合も含む.
(4)$\displaystyle x=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}},\ y=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}$のとき,$x^2+y^2$の値は$[コ]$,$x^3-y^3$の値は$[サ]$となる.
(5)大小の$2$個のさいころを投げ,出た目が同じ場合は$10$点,大のさいころの目のほうが大きい場合は$5$点,それ以外の場合には得点は得られないとするとき,点数を得られる目が出る確率は$[シ]$で,得点の期待値は$[ス]$点である.
埼玉大学 国立 埼玉大学 2013年 第1問
次の問いに答えよ.

(1)$64^{95}$と$65^{90}$の大小を比較せよ.
(2)$63^{100}$と$64^{95}$の大小を比較せよ.
九州工業大学 国立 九州工業大学 2013年 第3問
関数$f(x)=\log x$がある.曲線$y=f(x)$の点$(t,\ \log t)$における接線の方程式を$y=g(x)$とするとき,次に答えよ.ただし,対数は自然対数を表し,$e$は自然対数の底とする.

(1)$x>0$のとき,不等式$f(x)-g(x) \leqq 0$を証明せよ.

(2)$\displaystyle t>\frac{1}{2}$のとき,$\displaystyle \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}f(x) \, dx$と$\displaystyle \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}g(x) \, dx$をそれぞれ$t$を用いて表せ.

(3)自然数$n$に対して,$n!$と$\displaystyle \sqrt{2} \left( n+\frac{1}{2} \right)^{n+\frac{1}{2}}e^{-n}$の大小を比較せよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第2問
関数$\displaystyle f(x)=-\frac{5}{2}x(x-1)$を考える.$a$を実数とし,実数$b,\ c$を$b=f(a)$,$c=f(b)$により定める.

(1)不等式$a<b$を満たすような$a$の値の範囲を求めよ.
(2)連立不等式
\[ (*) \quad \left\{ \begin{array}{l}
a<b \\
b>c
\end{array} \right. \]
を満たすような$a$の値の範囲を求めよ.
(3)(2)の連立不等式$(*)$が成り立つとき,$c$と$f(c)$の大小を判定せよ.
秋田大学 国立 秋田大学 2013年 第3問
大小$2$個のさいころを投げて,出る目をそれぞれ$a,\ b$とする.次の問いに答えよ.

(1)$xy$平面上の$2$直線$\displaystyle y=\frac{1}{a}x+1,\ y=(b+1)x$のなす鋭角を$\theta$とする.

\mon[$①$] $\tan \theta$を$a$と$b$を用いて表せ.
\mon[$②$] $\tan \theta \leqq 1$となる確率を求めよ.

(2)$xy$平面上で,連立不等式$x \geqq 0,\ y \geqq 0,\ 2x+y \leqq 4$の表す領域を$D$とする.点$(x,\ y)$がこの領域$D$を動くとき,$\displaystyle \frac{b}{a}x+y$の最大値を$M$とする.

\mon[$①$] $\displaystyle \frac{b}{a} \leqq 2$のとき,$M$を求めよ.
\mon[$②$] $\displaystyle \frac{b}{a}>2$のとき,$M$を$a$と$b$を用いて表せ.
\mon[$③$] $M$の期待値を求めよ.
自治医科大学 私立 自治医科大学 2013年 第19問
大小$2$個のサイコロを同時に投げるとき,出た目の積が$5$の倍数になる確率を$p$とし,出た目の和が$5$の倍数になる確率を$q$とする.$\displaystyle \frac{1}{p-q}$の値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2013年 第4問
大小$2$個のさいころを投げたとき,大のさいころの出た目を$10$の位,小のさいころの出た目を$1$の位とする$2$桁の数をつくる.このとき,この数を$3$で割った余りが$1$となる確率を求めよ.
スポンサーリンク

「大小」とは・・・

 まだこのタグの説明は執筆されていません。