タグ「多項式」の検索結果

3ページ目:全84問中21問~30問を表示)
大分大学 国立 大分大学 2014年 第2問
数列の和について次の一連の問いに答えなさい.

(1)$\displaystyle \sum_{k=1}^n k=\frac{1}{2}n(n+1)$を示しなさい.
(2)多項式$(k+1)^3-k^3$の展開を利用して$\displaystyle \sum_{k=1}^n k^2=\frac{1}{6}n(n+1)(2n+1)$を示しなさい.
(3)$\displaystyle \sum_{k=1}^n k^3=\frac{1}{4}n^2(n+1)^2$を示しなさい.
(4)$\displaystyle \sum_{k=1}^n k^4$を求めなさい.結果は因数分解すること.
秋田大学 国立 秋田大学 2014年 第1問
次の問いに答えよ.

(1)次の式を,実数の範囲で因数分解せよ.
\[ 6(x+3)(x+4)(x+6)(x+8)-(x+1)(x+2)(x+12)(x+24) \]
(2)$n$を自然数,$A,\ B$を整数とする.多項式$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れるように,$A,\ B$の値を定めよ.
鹿児島大学 国立 鹿児島大学 2014年 第2問
次の各問いに答えよ.

(1)$a,\ b,\ c$は互いに異なる実数で,$a>1$,$b>1$,$c>1$とする.次の等式が成り立つとき,比$\log_2a:\log_2b:\log_2c$を求めよ.
\[ \log_2a-\log_8b=\log_2b-\log_8c,\quad \frac{\log_2a}{\log_8b}=\frac{\log_2b}{\log_8c} \]
(2)次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\displaystyle t=x+\frac{1}{x}$とおく.このとき,$\displaystyle x^2+\frac{1}{x^2}$と$\displaystyle x^3+\frac{1}{x^3}$をそれぞれ$t$についての多項式で表せ.

(ii) $\displaystyle \frac{2x^4-3x^3-5x^2-3x+2}{x^2}$を$t$についての多項式で表せ.

(iii) $4$次方程式$2x^4-3x^3-5x^2-3x+2=0$の解を全て求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第2問
次の各問いに答えよ.

(1)$a,\ b,\ c$は互いに異なる実数で,$a>1$,$b>1$,$c>1$とする.次の等式が成り立つとき,比$\log_2a:\log_2b:\log_2c$を求めよ.
\[ \log_2a-\log_8b=\log_2b-\log_8c,\quad \frac{\log_2a}{\log_8b}=\frac{\log_2b}{\log_8c} \]
(2)次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\displaystyle t=x+\frac{1}{x}$とおく.このとき,$\displaystyle x^2+\frac{1}{x^2}$と$\displaystyle x^3+\frac{1}{x^3}$をそれぞれ$t$についての多項式で表せ.

(ii) $\displaystyle \frac{2x^4-3x^3-5x^2-3x+2}{x^2}$を$t$についての多項式で表せ.

(iii) $4$次方程式$2x^4-3x^3-5x^2-3x+2=0$の解を全て求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第2問
次の各問いに答えよ.

(1)$a,\ b,\ c$は互いに異なる実数で,$a>1$,$b>1$,$c>1$とする.次の等式が成り立つとき,比$\log_2a:\log_2b:\log_2c$を求めよ.
\[ \log_2a-\log_8b=\log_2b-\log_8c,\quad \frac{\log_2a}{\log_8b}=\frac{\log_2b}{\log_8c} \]
(2)次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\displaystyle t=x+\frac{1}{x}$とおく.このとき,$\displaystyle x^2+\frac{1}{x^2}$と$\displaystyle x^3+\frac{1}{x^3}$をそれぞれ$t$についての多項式で表せ.

(ii) $\displaystyle \frac{2x^4-3x^3-5x^2-3x+2}{x^2}$を$t$についての多項式で表せ.

(iii) $4$次方程式$2x^4-3x^3-5x^2-3x+2=0$の解を全て求めよ.
東京理科大学 私立 東京理科大学 2014年 第2問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

$f(x)$はすべての係数が整数であるような$3$次多項式で,$x^3$の係数が$1$であり,
\[ \frac{-\sqrt[3]{2}-2+\sqrt[3]{2} \sqrt{3}i}{2} \]
は方程式$f(x)=0$の解の$1$つであるとする.ただし,$i$は虚数単位とする.このとき,
\[ f(x)=x^3+[チ]x^2+[ツ]x-[テ] \]
であり,$f(x)=0$の実数解は${[ト]}^{\frac{1}{3}}-[ナ]$である.
早稲田大学 私立 早稲田大学 2014年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)$x$についての多項式$P(x)$を$x^2+x+1$で割った余りが$x+1$,$x^2-x+1$で割った余りが$x-1$のとき,$P(x)$を$(x^2+x+1)(x^2-x+1)$で割った余りは$[ア]$である.
(2)関数$f(x)$が次の条件を満たすとき,$f(x)=[イ]$である.
任意の実数$x$に対して,$\displaystyle \int_0^x f(t) \, dt-3 \int_{-x}^0 f(t) \, dt=x^3$
(3)次の等式を満たす最大の整数$a$は$a=[ウ]$である.
\[ \left[ \frac{a}{2} \right]+\left[ \frac{2a}{3} \right]=a \]
ただし,実数$x$に対して,$[x]$は$x$以下の最大の整数を表す.
(4)四面体$\mathrm{ABCD}$において,$\mathrm{AC}=\mathrm{BD}=7$,$\mathrm{AB}=\mathrm{CD}=6$,$\mathrm{BC}=\mathrm{DA}=5$である.$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$を,それぞれ辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$上の点とするとき,$\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}$の最小値は$[エ]$である.
九州歯科大学 公立 九州歯科大学 2014年 第2問
$x$についての$n$次多項式$f(x)$が恒等式$f(x^3)=x^4f(x+1)-15x^5-10x^4+5x^3$をみたすとき,次の問いに答えよ.

(1)$f(0)$,$f(-1)$,$f(-8)$の値を求めよ.
(2)$n$の値を求めよ.
(3)$f(x)$を求めよ.
京都府立大学 公立 京都府立大学 2014年 第1問
$0<t<1$とする.$\triangle \mathrm{OAB}$において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とする.$\displaystyle \overrightarrow{\mathrm{AC}}=\frac{2}{3} \overrightarrow{\mathrm{AB}}$となる点を$\mathrm{C}$とし,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.$\overrightarrow{\mathrm{OD}}=t \overrightarrow{b}$となる点を$\mathrm{D}$,$\overrightarrow{\mathrm{OE}}=(1-t) \overrightarrow{a}$となる点を$\mathrm{E}$,$\overrightarrow{\mathrm{AF}}=(1-t) \overrightarrow{\mathrm{AB}}$となる点を$\mathrm{F}$とする.線分$\mathrm{AD}$と線分$\mathrm{OC}$の交点を$\mathrm{G}$とする.以下の問いに答えよ.

(1)$3|\overrightarrow{a}|^2+6|\overrightarrow{b}|^2-9|\overrightarrow{c}|^2=2|\overrightarrow{\mathrm{AB}}|^2$となることを示せ.
(2)$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$および$t$を用いて表せ.
(3)$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{DEF}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を$t$を用いて多項式で表し,$\displaystyle \frac{S_2}{S_1}$の最小値とそのときの$t$の値を求めよ.
北海道大学 国立 北海道大学 2013年 第5問
区間$-\infty<x<\infty$で定義された連続関数$f(x)$に対して
\[ F(x)=\int_0^{2x}tf(2x-t) \,dt \]
とおく.

(1)$\displaystyle F \left( \frac{x}{2} \right)=\int_0^x (x-s)f(s) \,ds$となることを示せ.
(2)$2$次導関数$F^{\prime\prime}$を$f$で表せ.
(3)$F$が$3$次多項式で$F(1)=f(1)=1$となるとき,$f$と$F$を求めよ.
スポンサーリンク

「多項式」とは・・・

 まだこのタグの説明は執筆されていません。