タグ「多角形」の検索結果

1ページ目:全5問中1問~10問を表示)
香川大学 国立 香川大学 2016年 第2問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のような,一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.対角線$\mathrm{OF}$上に点$\mathrm{P}$をとり,$\mathrm{OP}=x$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}$を通り対角線$\mathrm{OF}$と直交する平面で,立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を切る.その切り口の多角形の面積$S(x)$を$x$を用いて表せ.
(2)関数$y=S(x)$のグラフをかけ.

(3)定積分$\displaystyle \int_0^{\frac{2 \sqrt{3}}{3}} S(x) \, dx$を求めよ.

\end{mawarikomi}
日本女子大学 私立 日本女子大学 2013年 第1問
下の図のように,$F_1$を$1$辺の長さが$1$の正三角形とする.$F_1$の$3$つの辺のそれぞれを$3$等分し$3$つの線分に分ける.この$3$つの線分の中央の線分に,その線分を$1$辺とする正三角形を$F_1$の外側に追加して得られる多角形を$F_2$とする.次に,$F_2$の$12$個の辺のそれぞれを$3$等分し$3$つの線分に分ける.この$3$つの線分の中央の線分に,その線分を$1$辺とする正三角形を$F_2$の外側に追加して得られる多角形を$F_3$とする.以下同様にして,$F_4,\ F_5,\ F_6,\ \cdots$を作るものとする.$F_n$の辺の個数を$K_n$,周の長さを$L_n$,面積を$S_n$とする.
(図は省略)

(1)$K_n (n \geqq 1)$を求めよ.
(2)$L_n (n \geqq 1)$を求めよ.
(3)$S_1$と$S_n-S_{n-1} (n \geqq 2)$を求めよ.
(4)$S_n (n \geqq 1)$を求めよ.
(5)数列$\{L_n\}$の極限を調べよ.
(6)数列$\{S_n\}$の極限を調べよ.
成城大学 私立 成城大学 2013年 第3問
一辺の長さが$a_1$の正方形$\mathrm{S}_1$がある.以下の図のように,$\mathrm{S}_1$の対角線を一辺とする正方形$\mathrm{S}_2$をつくり,その一辺の長さを$a_2$とする.さらに,$\mathrm{S}_2$の対角線を一辺とする正方形$\mathrm{S}_3$をつくり,その一辺の長さを$a_3$とする.

以下,$1 \leqq n \leqq 7$に対して同様にしてつくられる正方形$\mathrm{S}_n$の一辺の長さを$a_n$とし,$n$個の正方形$\mathrm{S}_1,\ \cdots,\ \mathrm{S}_n$が重なってできる多角形の面積を$A_n$とするとき,以下の問いに答えよ.ただし,正方形は点$\mathrm{O}$を中心として反時計回りに回転するものとする.

(1)$a_n$を$a_1$を用いて表せ.
(2)$A_2$および$A_3$を$a_1$を用いて表せ.
(3)$A_n$を$a_1$を用いて表せ.
(図は省略)
明治大学 私立 明治大学 2012年 第4問
以下の問に答えなさい.

(1)円周上に異なる$m (m \geqq 3)$個の点がある.このうち$3$個の点を頂点としてできる三角形の数を$f(m)$とすると,$f(12)=[ラリル]$である.また,
\[ f(3)+f(4)+\cdots +f(11)+f(12)=[レロワ] \]
であり,
\[ \frac{1}{f(3)}+\frac{1}{f(4)}+\cdots +\frac{1}{f(11)}+\frac{1}{f(12)}=\frac{[ヲン]}{44} \]
である.
(2)円周上に異なる$n (n \geqq 3)$個の点がある.これらのうち,$3$個から$n$個の点を頂点としてできる多角形の総数を$S(n)$とするとき,$S(n)$を$n$の式で表しなさい.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
$\mathrm{O}$を原点とする座標空間において,$4$点
\[ \mathrm{A}_1(1,\ 1,\ 1),\quad \mathrm{B}_1(-1,\ -1,\ 1),\quad \mathrm{C}_1(1,\ -1,\ -1),\quad \mathrm{D}_1(-1,\ 1,\ -1) \]
を考えると,立体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$は正四面体である.このとき,以下の設問に答えよ.

(1)正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面に平行な平面$z=-1+h (0 \leqq h \leqq 2)$で切ったときに出来る図形の面積を$S(h)$とすると,
\[ S(h)=-[$34$]h^2+[$35$]h \]
と表され,$S(h)$は$h=[$36$]$のとき最大値$[$37$]$をとる.(このときの図形はペトリー多角形と呼ばれている.)さらに,
\[ V_1=\int_0^2 S(h) \, dh=\frac{[$38$]}{[$39$]} \]
とおくと,$V_1$は正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$の体積となっている.
(2)三角形$\mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,三角形$\mathrm{C}_1 \mathrm{D}_1 \mathrm{A}_1$,三角形$\mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1$の重心をそれぞれ$\mathrm{A}_2$,$\mathrm{B}_2$,$\mathrm{C}_2$,$\mathrm{D}_2$とする.このとき,立体$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$は再び,正四面体となる.(このことを,正四面体は自己双対であるという.)同様に,$n$を自然数として,三角形$\mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,三角形$\mathrm{C}_n \mathrm{D}_n \mathrm{A}_n$,三角形$\mathrm{D}_n \mathrm{A}_n \mathrm{B}_n$,三角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n$の重心をそれぞれ$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$とする.このとき,
\[ \overrightarrow{\mathrm{OA}}_1+\overrightarrow{\mathrm{OA}}_2+\cdots +\overrightarrow{\mathrm{OA}}_n=\frac{[$40$]}{[$41$]} \left\{ 1-\left( -\frac{[$42$]}{[$43$]} \right)^n \right\} \overrightarrow{\mathrm{OA}}_1 \]
である.また,正四面体$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の表面積$S_n$と体積$V_n$は,それぞれ,
\[ S_n=[$44$] \cdot [$45$]^{-[$46$]n+\frac{[$47$]}{2}},\quad V_n=[$48$] \cdot [$49$]^{-[$50$]n+[$51$]} \]
である.
スポンサーリンク

「多角形」とは・・・

 まだこのタグの説明は執筆されていません。