タグ「変曲点」の検索結果

2ページ目:全87問中11問~20問を表示)
北九州市立大学 公立 北九州市立大学 2016年 第3問
曲線$C:y=x^3-6x^2+9x$について,以下の問いに答えよ.

(1)曲線$C$の増減,極値,グラフの凹凸および変曲点を調べて,そのグラフをかけ.
(2)定数$a$に対し,直線$\ell:y=ax$が曲線$C$と$x=2$で交点をもつとき,$a$の値と全ての交点の座標を求めよ.
(3)$(2)$の条件のもとで曲線$C$と直線$\ell$とで囲まれた部分の面積を求めよ.
(4)直線$\ell$が曲線$C$と$x \geqq 0$の範囲で異なる$3$点で交わるような$a$の値の範囲を求めよ.
札幌医科大学 公立 札幌医科大学 2016年 第4問
関数$f(x)=x+2 \cos x$を$0 \leqq x \leqq 2\pi$の範囲で考える.

(1)関数$y=f(x)$の極値と変曲点を求め,グラフの概形を描け.
(2)関数$y=f(x)$の二つの変曲点を通る直線を$\ell$とする.曲線$y=f(x)$と直線$\ell$とで囲まれる図形を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a$を正の実数とする.座標平面上の曲線$C$を
\[ y=x^4-2(a+1)x^3+3ax^2 \]
で定める.曲線$C$が$2$つの変曲点$\mathrm{P}$,$\mathrm{Q}$をもち,それらの$x$座標の差が$\sqrt{2}$であるとする.以下の問に答えよ.

(1)$a$の値を求めよ.
(2)線分$\mathrm{PQ}$の中点と$x$座標が一致するような,$C$上の点を$\mathrm{R}$とする.三角形$\mathrm{PQR}$の面積を求めよ.
(3)曲線$C$上の点$\mathrm{P}$における接線が$\mathrm{P}$以外で$C$と交わる点を$\mathrm{P}^\prime$とし,点$\mathrm{Q}$における接線が$\mathrm{Q}$以外で$C$と交わる点を$\mathrm{Q}^\prime$とする.線分$\mathrm{P}^\prime \mathrm{Q}^\prime$の中点の$x$座標を求めよ.
旭川医科大学 国立 旭川医科大学 2015年 第2問
$n$を正の整数とする.$2n \pi \leqq x \leqq (2n+1) \pi$の範囲で関数$f(x)=x \sin x$を考える.関数$f(x)$が極大値をとる$x$を$a_n$とし,曲線$y=f(x)$の変曲点を$(b_n,\ f(b_n))$とする.次の問いに答えよ.

(1)$a_n$と$b_n$はそれぞれ唯$1$つあって,$\displaystyle 2n \pi<b_n<2n \pi+\frac{\pi}{2}<a_n<(2n+1) \pi$を満たすことを示せ.
(2)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}(a_n-2n \pi) \qquad (2) \ \lim_{n \to \infty}(b_n-2n \pi) \qquad (3) \ \lim_{n \to \infty}f(b_n) \]
(3)曲線$y=f(x) (2n \pi \leqq x \leqq (2n+1) \pi)$と$x$軸とで囲まれた図形を,$3$つの直線$x=b_n$,$\displaystyle x=2n \pi+\frac{\pi}{2}$,$x=a_n$によって$4$つの部分に分ける.その面積を左から順に$S_1$,$S_2$,$S_3$,$S_4$とするとき,$(S_3+S_4)-(S_1+S_2)$の値を求めよ.
(4)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}S_1 \qquad (2) \ \lim_{n \to \infty}S_3 \qquad (3) \ \lim_{n \to \infty}(S_4-S_2) \]
山梨大学 国立 山梨大学 2015年 第1問
次の問いに答えよ.

(1)不定積分$\displaystyle \int x \cos x \, dx$を求めよ.
(2)不等式$\displaystyle \frac{5x-6}{x-2}>x+1$を解け.
(3)関数$\displaystyle f(x)=\frac{1}{1+e^{-x}}$の増減,グラフの凹凸,変曲点および漸近線を調べて,そのグラフをかけ.
茨城大学 国立 茨城大学 2015年 第1問
$f(x)=2xe^{-x}$とおく.ただし,$e$は自然対数の底とする.以下の各問に答えよ.

(1)$0 \leqq x \leqq 3$の範囲で,関数$y=f(x)$の増減,極値,グラフの凹凸,変曲点を調べて,そのグラフの概形をかけ.
(2)正の実数$a$に対して,$\displaystyle I_a=\int_0^1 xe^{-ax} \, dx$,$\displaystyle J_a=\int_0^1 x^2e^{-ax} \, dx$とおく.$J_a$を$I_a$と$a$を用いて表せ.
(3)定積分$\displaystyle \int_0^1 f(x) \, dx$および$\displaystyle \int_0^1 \{f(x)\}^2 \, dx$を求めよ.
(4)曲線$y=f(x)$と,$3$直線$x=0$,$x=1$および$y=t$で囲まれた図形を,直線$y=t$を軸として$1$回転させてできる回転体の体積を$V(t)$とする.$t$を動かしたとき,$V(t)$の最小値とそのときの$t$の値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2015年 第1問
$a$を定数とする.$x>0$における関数
\[ f(x)=\log x+ax^2-3x \]
について,曲線$y=f(x)$は$\displaystyle x=\frac{1}{\sqrt{2}}$で変曲点をもつとする.

(1)$a$を求めよ.
(2)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解の個数を求めよ.
(3)曲線$y=f(x)$と$x$軸,および$2$直線$x=1$,$x=2$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
東北学院大学 私立 東北学院大学 2015年 第4問
関数$f(x)=x+x \sqrt{1-x^2}$について以下の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.ただし変曲点は求めなくてよい.
(3)$y=f(x)$のグラフと直線$y=x$で囲まれた部分の面積を求めよ.
学習院大学 私立 学習院大学 2015年 第3問
関数
\[ f(x)=\frac{\log x}{x} \quad (x>0) \]
を考える.

(1)$x$が正の実数全体を動くとき,$f(x)$の最大値と,最大値を与える$x$の値を求めよ.
(2)曲線$y=f(x)$の変曲点の座標を求めよ.
(3)不等式
\[ \int_1^n f(x) \, dx>2 \]
を満たす最小の自然数$n$を求めよ.ただし,自然対数の底$e$は$2.7<e<2.8$を満たすことを用いてよい.
スポンサーリンク

「変曲点」とは・・・

 まだこのタグの説明は執筆されていません。