タグ「変数」の検索結果

1ページ目:全31問中1問~10問を表示)
岡山理科大学 私立 岡山理科大学 2016年 第3問
関数
\[ f(x)=\log_4 (x-1)+\log_{\frac{1}{2}} (x+1) \]
について,次の問いに答えよ.

(1)$f(3)$の値を求めよ.
(2)関数$f(x)$において,変数$x$のとりうる値の範囲を求めよ.
(3)不等式$f(x) \leqq -2$を解け.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.

(1)方程式$\log_2 (5-x)=\log_8 (x^2-15)$を解くと$[ ]$である.また,変数$a,\ b$が$\log_9 a=(\log_3 b)^2$をみたすとき$\displaystyle \left( \frac{a}{b} \right)^8$の最小値は$[ ]$である.
(2)$a_1=-30$,$a_{n+1}-a_n=-2n+18$で定められる数列$\{a_n\}$について,$a_n>0$である$n$の個数を求めると$[ ]$であり,$\displaystyle S_n=\sum_{k=1}^n a_k$の最大値を求めると$[ ]$である.
埼玉大学 国立 埼玉大学 2015年 第4問
$n$は$2$以上の自然数とし,
\[ f(\theta)=\frac{\cos^{n-1}\theta \sin^{n-1}\theta}{\cos^{2n}\theta+\sin^{2n}\theta} \]
とする.次の問いに答えよ.

(1)$t=\tan^n \theta$と変数変換することにより,$\displaystyle \int_0^{\frac{\pi}{4}} f(\theta) \, d\theta$を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で$f(\theta)$の最大値および最小値を求めよ.
埼玉大学 国立 埼玉大学 2015年 第4問
関数$\displaystyle f(\theta)=\frac{\cos \theta \sin \theta}{\cos^4 \theta+\sin^4 \theta}$について,次の問いに答えよ.

(1)$t=\tan^2 \theta$と変数変換することにより,$\displaystyle \int_0^{\frac{\pi}{4}} f(\theta) \, d\theta$を求めよ.
(2)$f(\theta)$の最大値および最小値を求めよ.
山形大学 国立 山形大学 2015年 第2問
$\displaystyle y=\cos \frac{\pi x}{2} (0 \leqq x \leqq 1)$で与えられる曲線を$C$とする.曲線$C$と$x$軸,$y$軸で囲まれた図形$S$について,以下の問いに答えよ.

(1)図形$S$の面積を求めよ.
(2)図形$S$を$x$軸のまわりに$1$回転させて得られる立体の体積を求めよ.
(3)部分積分法を用いて次の不定積分を求めよ.
\[ \int x^2 \sin x \, dx \]
(4)図形$S$を$y$軸のまわりに$1$回転させて得られる立体の体積を求めよ.その際,曲線$C$は変数$t$を媒介変数として
\[ x=\frac{2}{\pi}t,\quad y=\cos t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表せることを利用せよ.
防衛医科大学校 国立 防衛医科大学校 2015年 第2問
スイッチを押すと,$0$から$n$までの整数が$1$つ表示される機械がある.表示される数字を$X$とすると,$X=k$となる確率$P(X=k)=C \alpha^k (k=0,\ 1,\ 2,\ \cdots,\ n)$である.ただし,$C$は定数,$0<\alpha<1$である.

(1)$P(X=k)$を$\alpha$と$k$で表せ($k=0,\ 1,\ 2,\ \cdots,\ n$).
(2)$P(X<k)>1-\alpha^k$であることを示せ($k=1,\ 2,\ 3,\ \cdots,\ n+1$).
(3)確率$p$で$1$点もらえ,確率$1-p$で得点がもらえない試行を考える($0<p<1$).この試行を独立に$m$回行ったとき,$l$点($0 \leqq l \leqq m$)もらえる確率を$Q_{m,l}(p)$と表す.このとき,$m,\ l$を一定とし,$p$を変数とみなして以下の問に答えよ.

(i) $y=\log Q_{m,l}(p)$はどのような変化をするか.$p$を横軸,$y$を縦軸とする$y$のグラフの概形を描け.ただし,$\log$は自然対数である.
(ii) $Q_{m,l}(p)$を最大にする$p$を求めよ.

(4)$\displaystyle \alpha=\frac{1}{2}$とする.このとき,$Q_{2m,m}(P(X<k))$を最大にする$k (k=1,\ 2,\ 3,\ \cdots,\ n)$を求めよ.
宮崎大学 国立 宮崎大学 2015年 第4問
$a \geqq 0$,$b \geqq 0$とする.このとき,変数$x$の関数
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.

(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
宮崎大学 国立 宮崎大学 2015年 第2問
$a \geqq 0$,$b \geqq 0$とする.このとき,変数$x$の関数
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.

(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
愛知学院大学 私立 愛知学院大学 2015年 第2問
$x$の関数$y=-3x^2+4ax-a$の最大値を$M$とするとき,次の問いに答えなさい.ただし,$a$は定数であり,$x$は$0 \leqq x \leqq 3$の範囲の変数である.

(1)$a=3$のとき,$M$の値を求めなさい.
(2)$0<a<3$のとき,$M$を$a$を用いて表しなさい.
スポンサーリンク

「変数」とは・・・

 まだこのタグの説明は執筆されていません。