タグ「変化」の検索結果

7ページ目:全110問中61問~70問を表示)
杏林大学 私立 杏林大学 2013年 第2問
動点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は,時刻$t=0$においてすべて点$\mathrm{A}(3,\ 0)$にあり,原点$\mathrm{O}(0,\ 0)$を中心とする半径$3$の円周上を反時計まわりに移動する.時刻$t$において$\angle \mathrm{AOP}=t$,$\angle \mathrm{AOQ}=2t$,$\angle \mathrm{AOR}=3t$である.以下,$t$は$0<t<\pi$を満たすものとする.

(1)時刻$t$において,三角形$\mathrm{PQR}$の面積$S$は,
\[ S=[ア] \sin t-\frac{[イ]}{[ウ]} \sin \left( [エ] t \right) \]
と表わせる.面積$S$は$\displaystyle t=\frac{[オ]}{[カ]} \pi$のとき最大値$\displaystyle \frac{[キク]}{[ケ]} \sqrt{[コ]}$をとる.

(2)点$\mathrm{R}$から直線$\mathrm{PQ}$に下ろした垂線の足を$\mathrm{H}$とする.時刻$t$において,行列
$\left( \begin{array}{cc}
\cos \displaystyle\frac{3}{2}t & \sin \displaystyle\frac{3}{2}t \\
-\sin \displaystyle\frac{3}{2}t & \cos \displaystyle\frac{3}{2}t
\end{array} \right)$で表わされる$1$次変換により,点$\mathrm{H}$は
\[ \left( 3 \cos \left( \frac{[サ]}{[シ]} t \right),\ 3 \sin \left( \frac{[ス]}{[セ]} t \right) \right) \]
に移動する.$\mathrm{OH}^2$は$\displaystyle \cos t=\frac{\sqrt{[ソ]}}{[タ]}$を満たす時刻$t$において最大値$[チ]+[ツ] \sqrt{[テ]}$をとる.
(3)時刻$t$の変化にともない,線分$\mathrm{PR}$の中点が描く軌跡を$C$とする.点$\mathrm{O}$を極とし,半直線$\alpha \overrightarrow{\mathrm{OA}} (\alpha \geqq 0)$を始線としたとき,曲線$C$の極方程式は,極座標$(r,\ \theta)$を用いて
\[ r=[ト] \cos \left( \frac{[ナ]}{[ニ]} \theta \right) \]
と表わされる.
玉川大学 私立 玉川大学 2013年 第3問
曲線$y=x^2$について以下の問いに答えよ.ただし,$m \neq 0$とする.

(1)傾きが$m$の接線の方程式を求めよ.
(2)傾きが$\displaystyle -\frac{1}{m}$の接線の方程式を求めよ.
(3)$(1)$の接線と$(2)$の接線の交点を求めよ.
(4)$m$が$0$以外の実数値をとって変化するとき,$(3)$で求めた交点の軌跡を求めよ.
成城大学 私立 成城大学 2013年 第2問
ある作業をするためにかかる時間は,作業回数に応じて変化し,$n$回目の作業時間$T_n$秒は,以下の式で示される.
\[ T_n=T_1 \cdot n^{-k} \]
ただし,$T_1$は$1$回目の作業時間,$k$は作業の種類によって異なる正の定数である.$\log_{10}3=0.4771$,$\log_{10}2=0.3010$として次の問いに答えなさい.

(1)作業$\mathrm{A}$の$1000$回目の作業時間が$150$秒,$2000$回目の作業時間が$50$秒であるときに,$k$の値を四捨五入して小数第$3$位まで求めよ.
(2)作業$\mathrm{B}$の$100$回目の作業時間が$1$回目の作業時間の半分になった.このときの$k$の値を,四捨五入して小数第$3$位まで求めよ.また,作業時間が$100$回目のさらに半分に縮まるのは,何回目の作業か.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第1問
以下の各問に答えよ.

(1)ある大学の売店では年会費を$5,000$円払えば会員となり,品物を$5 \, \%$引きで買うことができる.$1$個$380$円の品物を買うとき,何個以上買うと,会員になった方が,会員にならないよりも合計金額が安くなるか答えよ.
(2)$2$次関数$y=3x^2+6nx+12n$がある.

(i) この$2$次関数の最小値$m$を,$n$の関数で表せ.
(ii) $n$の値を変化させて,$(1)$における最小値$m$が最も大きくなるときの$n$の値と,そのときの$m$の値を求めよ.

(3)底面の半径が$6$,高さが$8$の円錐に内接する球$\mathrm{Q}$の表面積と体積を求めよ.ただし,円周率は$\pi$とする.
秋田県立大学 公立 秋田県立大学 2013年 第3問
$a$を正の定数とし,$f(x)=ae^{-ax}$とする.ただし,$e$を自然対数の底とする.原点を$\mathrm{O}$とし,曲線$y=f(x)$上の点$\mathrm{P}(s,\ f(s))$における接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,以下の設問に答えよ.各設問とも,解答とともに導出過程も記述せよ.

(1)接線$\ell$の方程式と$2$点$\mathrm{Q}$,$\mathrm{R}$の座標を求めよ.
(2)曲線$y=f(x)$上の点$(1,\ f(1))$における接線と$x$軸,および直線$x=1$で囲まれた部分の面積を$S_1$とする.また,曲線$y=f(x)$と$x$軸,および$2$直線$x=1$,$x=t$で囲まれた部分の面積を$S_2$とする.ただし,$t>1$とする.このとき,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.
(3)$s$の値が$s \geqq 0$の範囲で変化するとき,三角形$\mathrm{ROQ}$の面積$T(s)$の最大値とそのときの$s$の値を求めよ.
滋賀大学 国立 滋賀大学 2012年 第2問
点A$\displaystyle \left( a,\ \frac{1}{2} \right)$を不等式$y < 4x-4x^2$の表す領域内の点とし,点Aを通り傾き$m$の直線を$\ell$とする.直線$\ell$と放物線$y=4x-4x^2$で囲まれた部分の面積を$S$とするとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$m$を変化させたとき,$S$の最小値を$g(a)$とする.$g(a)$を与える$m$を$a$を用いて表せ.
(3)$g(a)$を最大にする$a$の値を求めよ.また,そのときの直線$\ell$の方程式を求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第2問
$24$時間診療業務を休みなく行う病院において,$40$日間で$1$万個使用される医療材料$\mathrm{A}$について考える.$\mathrm{A}$の使用頻度は常に一定であり,$1$日の時間帯や曜日による変動は全くないものとする.さて,病院における在庫管理では,「品切れ」が起きないこと,「コスト」をできるだけ低くすること,この$2$つが肝要である.医療材料$\mathrm{A}$の保管費は,その保管期間に比例し,$1$個につき$10$日間で$1$円である.また,納入業者に$\mathrm{A}$を注文すれば,注文量の多少に関わらず,品物が届いた時点で$200$円の事務費がかかる.なお,担当者は$\mathrm{A}$の在庫量$y$の時間的推移を把握しており,品切れになる直前という最適のタイミングで,注文した量が届くものとする.われわれは,保管費と事務費の和$S$を最小にするような注文の仕方を求める.以下の問いに答えよ.

(1)$\mathrm{A}$の在庫は最初$1$万個あったとする.そして注文する量は毎回一定として,$x$で表す.このとき,時間$t$による在庫量$y$の変化を表すグラフを,横軸を時間の$t$軸とする座標平面上に図示せよ.(図示する際には,適当な$x$の値を自ら設定すること.)
以下,$1$回目の注文によって品物の届く時点以降の$y$の変化について考察する.
(2)周期的な$y$の変動に留意して,平均在庫量を求めよ.
(3)長期にわたる保管費,事務費の総額をそれぞれ見積もり,保管費と事務費の和$S$の「$1$日当たりの平均コスト」を求めよ.さらに,この$1$日当たりの平均コストを最小にするような$x$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
$a>0$とし,$x$の$3$次関数$f(x)$を
\[ f(x) = x^3 -5ax^2 + 7a^2x \]
と定める.また,$t \geqq 0$に対し,曲線$y=f(x)$と$x$軸および$2$直線$x=t$,$x=t+1$で囲まれた部分の面積を$S(t)$で表す.

(1)$S(0)=[ト]$である.
(2)$f(x)$は$x=[ナ]$で極小値をとる.曲線$y=f(x)$上にあり,$x$の値$[ナ]$に対応する点を$\mathrm{P}$とする.$a$の値が変化するとき,点$\mathrm{P}$の軌跡は曲線$y=[ニ] \ (x>0)$である.
(3)$S(t)=S(0)$を満たす正の実数$t$が存在するような$a$の値の範囲を不等式で表すと$[ヌ]$となる.以下,$a$の値はこの範囲にあるとする.$c$を$S(c)=S(0)$を満たす最大の正の実数とする.区間$0 \leqq t \leqq c$における$S(t)$の最大値,最小値をそれぞれ$M(a)$,$m(a)$とするとき,$M(a)+m(a)=[ネ]$となる.
早稲田大学 私立 早稲田大学 2012年 第4問
円$C$とその内部の点$\mathrm{P}_0$が与えられている.初め$\mathrm{P}_0$にある動点が,円周上の点$\mathrm{P}_1$まで線分$\mathrm{P}_0 \mathrm{P}_1$上を動き,$\mathrm{P}_1$からは,$\mathrm{P}_1$における円$C$の接線$\ell_1$と線分$\mathrm{P}_0 \mathrm{P}_1$のなす角が$\ell_1$と線分$\mathrm{P}_1 \mathrm{P}_2$のなす角に等しくなるように向きを変えて,円周上の点$\mathrm{P}_2$まで線分$\mathrm{P}_1 \mathrm{P}_2$上を動く(図例$1$).以下,自然数$n$について,円周上の点$\mathrm{P}_n$に至ったあとは,$\mathrm{P}_n$における円$C$の接線$\ell_n$と線分$\mathrm{P}_{n-1} \mathrm{P}_n$のなす角が$\ell_n$と線分$\mathrm{P}_n \mathrm{P}_{n+1}$のなす角に等しくなるように向きを変え,円周上の点$\mathrm{P}_{n+1}$まで線分$\mathrm{P}_n \mathrm{P}_{n+1}$上を動き,この動きをくり返す(図例$2$).線分$\mathrm{P}_0 \mathrm{P}_1$と接線$\ell_1$のなす角を$\alpha (\displaystyle 0 \leqq \alpha \leqq \frac{\pi}{2})$とする.

(1)$\mathrm{P}_m=\mathrm{P}_1$となる$3$以上の自然数$m$が存在するような角$\alpha$をすべて決定せよ.
(2)点$\mathrm{P}_1$の位置によって角$\alpha$は変化し得る.角$\alpha$が最大となる$\mathrm{P}_1$の位置,および最小となる$\mathrm{P}_1$の位置を求めよ.
(3)$\mathrm{P}_4=\mathrm{P}_1$となる点$\mathrm{P}_1$がとれるような点$\mathrm{P}_0$の存在範囲を求めよ.
(図は省略)
スポンサーリンク

「変化」とは・・・

 まだこのタグの説明は執筆されていません。