タグ「変化」の検索結果

1ページ目:全110問中1問~10問を表示)
滋賀大学 国立 滋賀大学 2016年 第4問
関数$f(x)=x^3-5x^2+6x+1$について,次の問いに答えよ.

(1)$x \geqq 0$のとき,不等式$f(x)>0$が成り立つことを証明せよ.
(2)$a$を$0$以上の定数とし,曲線$y=f(x)$と$x$軸および$2$直線$x=a$,$x=a+1$で囲まれた図形の面積を$S(a)$とする.$a$を変化させたとき,$S(a)$の最小値とそのときの$a$の値を求めよ.
三重大学 国立 三重大学 2016年 第1問
平面上の$\triangle \mathrm{ABC}$と点$\mathrm{O}$を考える.$m,\ n$は正の実数とする.

(1)辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{M}$とする.このとき${|\overrightarrow{\mathrm{AB|}}}^2$,${|\overrightarrow{\mathrm{OM|}}}^2$を${|\overrightarrow{\mathrm{OA|}}}^2$,${|\overrightarrow{\mathrm{OB|}}}^2$と内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$で表せ.さらに
\[ \frac{mn}{m+n} {|\overrightarrow{\mathrm{AB|}}}^2+(m+n) {|\overrightarrow{\mathrm{OM|}}}^2=n {|\overrightarrow{\mathrm{OA|}}}^2+m {|\overrightarrow{\mathrm{OB|}}}^2 \]
を示せ.
(2)辺$\mathrm{AB}$を$m:n$に内分する点を$\mathrm{M}_1$,辺$\mathrm{BC}$を$m:n$に内分する点を$\mathrm{M}_2$,辺$\mathrm{CA}$を$m:n$に内分する点を$\mathrm{M}_3$とする.このとき${|\overrightarrow{\mathrm{OA|}}}^2+{|\overrightarrow{\mathrm{OB|}}}^2+{|\overrightarrow{\mathrm{OC|}}}^2$は
\[ \frac{mn}{{(m+n)}^2} \left( {|\overrightarrow{\mathrm{AB|}}}^2+{|\overrightarrow{\mathrm{BC|}}}^2+{|\overrightarrow{\mathrm{CA|}}}^2 \right)+{|\overrightarrow{\mathrm{OM|_1}}}^2+{|\overrightarrow{\mathrm{OM|_2}}}^2+{|\overrightarrow{\mathrm{OM|_3}}}^2 \]
に等しいことを示せ.
(3)$(2)$の$m,\ n$を変化させたとき
\[ {|\overrightarrow{\mathrm{OA|}}}^2+{|\overrightarrow{\mathrm{OB|}}}^2+{|\overrightarrow{\mathrm{OC|}}}^2-{|\overrightarrow{\mathrm{OM|_1}}}^2-{|\overrightarrow{\mathrm{OM|_2}}}^2-{|\overrightarrow{\mathrm{OM|_3}}}^2 \]
の最大値を${|\overrightarrow{\mathrm{AB|}}}^2$,${|\overrightarrow{\mathrm{BC|}}}^2$,${|\overrightarrow{\mathrm{CA|}}}^2$で表せ.
九州工業大学 国立 九州工業大学 2016年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円を$C_1$とする.円$C_1$に外接しながら,半径$1$の円$C_2$がすべることなく回転する.円$C_2$の中心を$\mathrm{P}$とし,円$C_2$上の点$\mathrm{Q}$は最初,$x$軸上の点$\mathrm{A}(3,\ 0)$にあるものとする.半直線$\mathrm{PQ}$上で点$\mathrm{P}$からの距離が$2$の点を$\mathrm{R}$とし,$\mathrm{OP}$が$x$軸の正の向きとなす角を$\theta$とする.$C_2$が回転して$\theta$が$0$から$2\pi$まで変化するとき,点$\mathrm{R}$が描く曲線を$C$とする.曲線$C$の概形を図$1$に示す.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{P}$を通り$x$軸と平行な直線を$\ell$とする.直線$\ell$と線分$\mathrm{PR}$のなす角$\alpha$を,$\theta$を用いて表せ.また,$\mathrm{R}$の座標を$\theta$を用いて表せ.
(3)曲線$C$と$x$軸の共有点の座標をすべて求めよ.
(4)曲線$C$と$y$軸の共有点の座標をすべて求めよ.
(5)点$\mathrm{R}$の$x$座標が最小となるときの点$\mathrm{R}$の座標をすべて求めよ.
(6)曲線$C$と$x$軸,$y$軸に囲まれた図$2$の斜線部分の面積を求めよ.
岩手大学 国立 岩手大学 2016年 第5問
放物線$y=x^2$と円$\displaystyle x^2+(y-3)^2=\frac{r^2}{4}$について,次の問いに答えよ.ただし,$r$は正の定数である.

(1)$r=6$のとき,放物線と円の共有点の座標をすべて求めよ.
(2)$r$がすべての正の実数値をとって変化するとき,放物線と円の共有点の個数はどのように変わるか,調べよ.
東京学芸大学 国立 東京学芸大学 2016年 第3問
実数$a$に対して,関数$\displaystyle f(x)=x^4+\frac{8}{3}ax^3-2x^2-8ax$が$x=X$で極大値$Y$をとるとする.$a$の値が変化するとき,点$(X,\ Y)$が描く軌跡を図示せよ.
九州工業大学 国立 九州工業大学 2016年 第4問
点$\mathrm{A}(1,\ 0)$および点$\displaystyle \mathrm{P}(\sqrt{3} \cos \theta,\ \sqrt{3} \sin \theta) \left( 0<\theta<\frac{\pi}{4} \right)$がある.$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とし,$2$点$\mathrm{P}$,$\mathrm{A}$を通る直線を$\ell$,$2$点$\mathrm{O}$,$\mathrm{Q}$を通る直線を$m$とする.次に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\sqrt{3} \cos \theta>1$を示せ.
(2)直線$\ell$の方程式と直線$m$の方程式を$\theta$を用いて表せ.
(3)直線$\ell$と直線$m$の交点$\mathrm{R}$の座標を$\theta$を用いて表せ.
(4)三角形$\mathrm{PAQ}$の面積を$S$とする.$\theta$が変化するとき,$S$の最大値とそのときの$\theta$の値を求めよ.
(5)$\theta$が$(4)$で求めた値をとるとき,$2$直線$\ell,\ m$および曲線$x^2+y^2=3 (x \geqq \sqrt{3} \cos \theta)$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
福井大学 国立 福井大学 2016年 第4問
複素数$z$は,以下に述べる規則$(ⅰ),\ (ⅱ)$にしたがって,$1$秒ごとに値が変化していくものとする.ただし,$i$を虚数単位として,$\displaystyle \alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$とおき,$n=0,\ 1,\ 2,\ \cdots$について,時刻$n$秒での$z$の値を$z_n$とおく.


(i) $z_0=1$とする.
(ii) $z$の値は,時刻$n+1$秒において,確率$\displaystyle \frac{1}{2}$で$z_{n+1}=\alpha z_n$に,確率$\displaystyle \frac{1}{2}$で$z_{n+1}=\alpha^{-1}z_n$に変化する.

$m=1,\ 2,\ 3,\ \cdots$について,$z_{2m}=\alpha^2$となる確率を$p_m$,$z_{2m}=1$となる確率を$q_m$とおくとき,以下の問いに答えよ.

(1)$z_{2m}=-1$となる確率を求めよ.
(2)$q_m$を,$p_m$を用いて表せ.
(3)$p_m$を求めよ.
(4)$z_n=1$となる確率を求めよ.
久留米大学 私立 久留米大学 2016年 第1問
座標平面上の$2$直線$mx-y+1=0$,$x+my-m-2=0$の交点を$\mathrm{P}$とする.ここで,$m$は実数とする.

(1)$m$の値が変化するとき,点$\mathrm{P}$が描く軌跡の方程式は$[$1$]$である.ただし,点$(0,\ 1)$を含まない.
(2)$m$の値が$\displaystyle \frac{1}{\sqrt{3}} \leqq m \leqq 1$のとき,点$\mathrm{P}$が描く曲線の長さは$[$2$]$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
以下の問いに答えよ.

(1)$k$を自然数とする.数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{S_n\}$が初項$k$,公比$k$の等比数列であるとする.
\begin{itemize}
$k=3$の場合,$a_n \geqq 5000$を満たすのは$n \geqq [$1$]$のときである.
$a_n$が$100$の倍数となる$n$が存在するような$10$以下の自然数$k$は$[$2$]$つあり,このとき,$a_n$が$100$の倍数となるのは$n \geqq [$3$]$のときである.
\end{itemize}
(2)$\alpha$を$0 \leqq \alpha<2\pi$を満たす定数とする.実数$t$が$0 \leqq t \leqq 2\pi$の範囲で変化するとき,座標平面上の点$\mathrm{P}(\sin t,\ \sin (t+\alpha))$の軌跡を$\mathrm{T}$とする.
\begin{itemize}
$\mathrm{T}$が線分となるような$\alpha$の値をすべて記せ.
$\mathrm{T}$が原点を中心とする円となるような$\alpha$の値をすべて記せ.
\end{itemize}
同志社大学 私立 同志社大学 2016年 第2問
平面上の$\triangle \mathrm{OAB}$において,$\angle \mathrm{OAB}$の二等分線と線分$\mathrm{OB}$との交点を$\mathrm{P}$,$\angle \mathrm{OBA}$の二等分線と線分$\mathrm{OA}$との交点を$\mathrm{Q}$とおく.直線$\mathrm{AP}$と直線$\mathrm{BQ}$との交点を$\mathrm{R}$とおく.$\mathrm{OA}=x$,$\mathrm{OB}=y$,$\mathrm{AB}=1$とし,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$と平行で向きが同じである単位ベクトルをそれぞれ$\overrightarrow{u}$,$\overrightarrow{v}$とおく.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$x,\ y,\ \overrightarrow{v}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OR}}$を$x,\ y,\ \overrightarrow{u},\ \overrightarrow{v}$を用いて表せ.
(3)直線$\mathrm{OR}$と直線$\mathrm{AB}$が垂直であるとき,直線$\mathrm{AB}$と直線$\mathrm{PQ}$が平行となることを示せ.
(4)$2 \overrightarrow{u} \cdot \overrightarrow{v}=-1$であり,$x,\ y$が変化するとき,$\overrightarrow{\mathrm{OR}}$の大きさが最大となるときの$x,\ y$の値と$\overrightarrow{\mathrm{OR}}$の大きさをそれぞれ求めよ.
スポンサーリンク

「変化」とは・・・

 まだこのタグの説明は執筆されていません。