タグ「増加」の検索結果

1ページ目:全34問中1問~10問を表示)
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
公立はこだて未来大学 公立 公立はこだて未来大学 2016年 第3問
$a,\ b$を実数とする.関数$f(x)=x^3-3a^2x+2b$について,以下の問いに答えよ.

(1)$f(x)$が単調に増加するとき,$a$についての条件を求めよ.
(2)$y=f(x)$のグラフが$x$軸と異なる$3$点で交わるための条件を$a$と$b$を用いて表せ.
(3)$a,\ b$が$(2)$で求めた条件をみたすとき,点$(a,\ b)$が存在する領域を座標平面上に図示せよ.
横浜市立大学 公立 横浜市立大学 2016年 第3問
関数$y=\tan x$は,区間$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$で単調増加である.したがって,この区間で逆関数を作ることが出来る.それを
\[ y=\phi(x) \quad (-\infty<x<\infty) \]
と書く(この逆関数を$\mathrm{Arctan} \ x$と書く参考書もある).正確を期すために,$\displaystyle -\frac{\pi}{2}<\phi(x)<\frac{\pi}{2}$としておく.以下の問いに答えよ.ただし,「$-\infty<x<\infty$」は「$x$は実数」という意味である.

(1)関数$f(x)$を
\[ f(x)=\frac{1}{4 \sqrt{2}} \log \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}+\frac{1}{2 \sqrt{2}} \left\{ \phi(\sqrt{2}x+1)+\phi(\sqrt{2}x-1) \right\} \]
とおく.$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)積分
\[ \int_0^1 \frac{1}{x^4+1} \, dx \]
を求めたい.正確な値は求められないので,以下のようにする.即ち,関数$G(x)$で
\[ \int_0^1 \frac{1}{x^4+1} \, dx=G(\sqrt{2}+1) \]
となる関数を求めよ.
(3)積分の等式
\[ \int_0^\pi \frac{x \sin x}{1+\cos^4 x} \, dx=\pi \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos^4 x} \, dx \]
を示せ.
(4)積分
\[ \int_0^{\pi} \frac{x \sin x}{1+\cos^4 x} \, dx \]
を求めよ.
九州工業大学 国立 九州工業大学 2015年 第4問
関数$\displaystyle f(x)=\frac{\sqrt{x^2-1}}{x} (x \geqq 1)$と曲線$C:y=f(x)$について,次に答えよ.

(1)区間$x>1$で,$f(x)$は増加し,曲線$C$は上に凸であることを示せ.
(2)曲線$C$の点$(\sqrt{2},\ f(\sqrt{2}))$における接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$と曲線$C$および$x$軸で囲まれた図形を$D$とする.$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
(4)$(3)$で定めた図形$D$の面積$S$を求めよ.
電気通信大学 国立 電気通信大学 2015年 第2問
関数$f(t),\ g(t)$を次のように定義する.ただし,$e$は自然対数の底とする.
\[ f(t)=(t-1)e^{-t},\quad g(t)=(t-1)^2e^{-t} \]
$xy$平面上の曲線$C$が,媒介変数$t$を用いて
\[ x=f(t),\quad y=g(t) \quad (1 \leqq t \leqq 3) \]
と表されるとき,以下の問いに答えよ.

(1)$f(t)=g(t)$となる$t$の値を$\alpha,\ \beta (\alpha<\beta)$とする.$\alpha,\ \beta$の値を求めよ.さらに,$\alpha \leqq t \leqq \beta$のとき,$f(t) \geqq g(t)$であることを示せ.
(2)導関数$f^\prime(t),\ g^\prime(t)$をそれぞれ求めよ.さらに,区間$\alpha \leqq t \leqq \beta$において,関数$f(t)$,$g(t)$がともに単調に増加することを示せ.
(3)次の定積分をそれぞれ求めよ.
\[ I_1=\int_0^1 ue^{-2u} \, du,\quad I_2=\int_0^1 u^2 e^{-2u} \, du,\quad I_3=\int_0^1 u^3e^{-2u} \, du \]
(4)曲線$C$と直線$y=x$で囲まれた図形の面積$S$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
次の問いに答えよ.

(1)計算せよ.
\[ \sum_{k=1}^{10} (2k-1)^2=\kakkofour{$101$}{$102$}{$103$}{$104$} \]
(2)計算せよ.
\[ \sum_{k=1}^{20} (-1)^{k-1}k^2=\kakkofour{$105$}{$106$}{$107$}{$108$} \]
(3)$1$から$20$までの数を$2$つの数列$a_1,\ a_2,\ \cdots,\ a_{10}$と$b_1,\ b_2,\ \cdots,\ b_{10}$に分ける.
\[ S=\sum_{k=1}^{10} a_kb_k \]
と定義し,分け方を種々考え,$S$の最小値と最大値を求めると,それぞれ
\[ [$109$][$110$][$111$],\quad \kakkofour{$112$}{$113$}{$114$}{$115$} \]
となる.(ヒント:増加数列や減少数列を考える.)
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2015年 第4問
$1$個のサイコロを$3$回続けて投げる.$xy$平面上で,原点$\mathrm{O}$を起点とし$1$回目に出た目と同じ数だけ$x$座標を増加させた点を$\mathrm{A}$とする.次に,点$\mathrm{A}$を起点とし$2$回目に出た目と同じ数だけ$y$座標を増加させた点を$\mathrm{B}$とする.さらに,点$\mathrm{B}$を起点とし$3$回目に出た目と同じ数だけ$x$座標を減少させた点を$\mathrm{C}$とする.また,四角形$\mathrm{OABC}$の面積を$S$とおく.以下の問題に答えよ.

(1)四角形$\mathrm{OABC}$が正方形になる確率を求めよ.
(2)線分$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$の長さがすべて異なる確率を求めよ.
(3)$\angle \mathrm{COA}={45}^\circ$になる確率を求めよ.
(4)面積$S$が整数になる確率を求めよ.
(5)面積$S$が$25$以上になる確率を求めよ.
信州大学 国立 信州大学 2014年 第4問
座標平面において,$C:y=e^{-x} (x>0)$上の点$(a,\ e^{-a})$の接線を$L$とおき,$L$と$x$軸との交点を$\mathrm{A}$,$L$と$y$軸との交点を$\mathrm{B}$,原点を$\mathrm{O}$とする.三角形$\mathrm{OAB}$の面積を$S_1$とし,$y$軸,$L$,$C$で囲まれる図形の面積を$S_2$とおく.

(1)$S_1,\ S_2$をそれぞれ求めよ.
(2)$a>0$のとき,$(a-1)e^a+1>0$であることを示せ.
(3)$\displaystyle \frac{S_2}{S_1}$を$a$の関数とみたとき,区間$(0,\ \infty)$で単調に増加することを示せ.
山梨大学 国立 山梨大学 2014年 第5問
曲線$C$は媒介変数$t (0 \leqq t \leqq 2\pi)$によって,$x=t-\sin t$,$y=1-\cos t$と表される.

(1)$x$は$t$の関数として増加関数であることを示せ.
(2)$0<t<2\pi$のとき,$\displaystyle \frac{dy}{dx}$を$t$を用いた式で表せ.また,$y$の$x$に関する増減を調べよ.
(3)不定積分$\displaystyle \int \cos^2 t \, dt$および$\displaystyle \int \cos^3 t \, dt$を求めよ.
(4)曲線$C$と$x$軸で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
スポンサーリンク

「増加」とは・・・

 まだこのタグの説明は執筆されていません。