タグ「垂直」の検索結果

3ページ目:全311問中21問~30問を表示)
山梨大学 国立 山梨大学 2016年 第3問
$xy$平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ 0)$,$\displaystyle \mathrm{P} \left( \frac{1}{2},\ t \right)$ \ $\displaystyle \left( \frac{1}{2} \leqq t<1 \right)$,$\displaystyle \mathrm{Q}(\alpha,\ 0)$ \ $\displaystyle \left( \frac{1}{2} \leqq \alpha \leqq 1 \right)$がある.$\mathrm{A}$,$\mathrm{P}$を通る直線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\triangle \mathrm{APB}$において,$\angle \mathrm{APB} \leqq {90}^\circ$を示せ.
(3)$\ell$に垂直で$\mathrm{Q}$を通る直線を$m$とする.$\ell$と$m$の交点を$\mathrm{R}$とするとき,$\mathrm{R}$の$x$座標を$\alpha$と$t$を用いた式で表せ.
(4)$(3)$の$\mathrm{R}$が線分$\mathrm{PA}$上にあるための$\alpha$の範囲を$t$を用いた式で表せ.
東北学院大学 私立 東北学院大学 2016年 第1問
次の各問題の$[ ]$に適する答えを記入せよ.

(1)$\sin \theta+\cos \theta=k$とするとき$\displaystyle \frac{\cos \theta}{\sin^2 \theta}+\frac{\sin \theta}{\cos^2 \theta}$を$k$を用いて表すと$[ア]$である.
(2)$2^{2016} \cdot 3^{2020}$は$[イ]$桁の数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(3)ベクトル$\overrightarrow{a}=(1,\ 1,\ 3)$,$\overrightarrow{b}=(2,\ 0,\ -3)$の両方に垂直で,大きさが$1$のベクトルを成分表示すると$[ウ]$となる.
同志社大学 私立 同志社大学 2016年 第3問
座標空間内の$4$点$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ 1,\ 5)$,$\mathrm{C}(2,\ 3,\ -1)$,$\mathrm{P}(2 \cos \theta,\ \sin \theta,\ 0)$を考える.ただし,$0 \leqq \theta<2\pi$とする.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直で,大きさが$1$のベクトルをすべて求めよ.
(3)点$\mathrm{P}$から,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$に,下ろした垂線の足$\mathrm{H}$の座標を$\theta$を用いて表せ.
(4)四面体$\mathrm{PABC}$の体積$V$を$\theta$を用いて表せ.
(5)四面体$\mathrm{PABC}$の体積$V$の最大値と最小値を求めよ.
明治大学 私立 明治大学 2016年 第4問
次の設問の$[ ]$に適当な数を入れなさい.

点$(4,\ 2,\ 7)$を通りベクトル$\overrightarrow{a}=(2,\ 1,\ 4)$に平行な直線を$\ell$,点$(2,\ 12,\ -5)$を通りベクトル$\overrightarrow{b}=(1,\ 3,\ -3)$に平行な直線を$m$とし,直線$\ell$上の点を$\mathrm{P}$,直線$m$上の点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$が直線$\ell$および直線$m$と垂直であるとき,点$\mathrm{P}$の$x$座標は$[ ]$であり,線分$\mathrm{PQ}$の長さは$[ ]$である.
北里大学 私立 北里大学 2016年 第3問
双曲線$\displaystyle \frac{x^2}{2}-y^2=1$に対し,双曲線上の点$\mathrm{P}(a,\ b)$における接線を$\ell$とする.ただし,$a>0$とする.

(1)$\ell$の方程式が$\displaystyle \frac{ax}{2}-by=1$で与えられることを示せ.
(2)$\ell$に垂直な双曲線の接線$m$が引けるための$a$の条件を求めよ.
(3)$a$が$(2)$の条件を満たすとする.双曲線上の点$\mathrm{Q}(c,\ d)$における接線が$\ell$に垂直に交わるように点$\mathrm{Q}$を定める.ただし,$d>0$とする.$\mathrm{O}$を原点とするとき,$\triangle \mathrm{OPQ}$の面積を最小にする$a$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
四面体$\mathrm{OABC}$の$4$つの面はすべて合同であり,$\mathrm{OA}=\sqrt{10}$,$\mathrm{OB}=2$,$\mathrm{OC}=3$であるとする.このとき,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[ニ]$であり,三角形$\mathrm{ABC}$の面積は$[ヌ]$である.

いま,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{AH}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて$\overrightarrow{\mathrm{AH}}=[ネ]$と表される.また,四面体$\mathrm{OABC}$の体積は$[ノ]$である.
次に,線分$\mathrm{AH}$と線分$\mathrm{BC}$の交点を$\mathrm{P}$,点$\mathrm{P}$から線分$\mathrm{AC}$に下ろした垂線を$\mathrm{PQ}$とすると,$\mathrm{PQ}$の長さは$[ハ]$である.また,$2$点$\mathrm{P}$,$\mathrm{Q}$を通り平面$\alpha$に垂直な平面による四面体$\mathrm{OABC}$の切り口の面積は$[ヒ]$である.

(図は省略)
早稲田大学 私立 早稲田大学 2016年 第2問
正方形$\mathrm{ABCD}$を底面,点$\mathrm{P}$を頂点とする正四角錐$\mathrm{PABCD}$に内接する球について考える.ただし,正四角錐とは,頂点と底面の正方形の中心を結ぶ直線が底面と垂直になる角錐である.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$および線分$\mathrm{PM}$の長さをそれぞれ$a,\ b$とする.次の問に答えよ.

(1)内接する球の半径を$a,\ b$を用いて表せ.
(2)$\displaystyle x=\frac{b}{a}$と定めるとき,$\displaystyle \frac{\text{内接する球の表面積}}{\text{正四角錐$\mathrm{PABCD}$の表面積}}$を$x$で表わし,その最大値を求めよ.
(3)$(2)$で最大値をとるときの正四角錐$\mathrm{PABCD}$の体積を$a$を用いて表せ.
早稲田大学 私立 早稲田大学 2016年 第1問
次の問に答えよ.

(1)直線$-2x+4y+5=0$を$\ell$とする.点$\mathrm{A}(2,\ 4)$を通り,直線$\ell$に垂直な直線を$m$とし,同じく点$\mathrm{A}$を通り,$x$軸に平行な直線を$n$とする.直線$\ell$と直線$m$の交点を$\mathrm{B}$とし,直線$\ell$と直線$n$の交点を$\mathrm{C}$とするとき,次の各問いに答えよ.

(i) 点$\mathrm{B}$の座標は$([ア],\ [イ])$である.
(ii) 線分$\mathrm{AB}$の長さは$[ウ]$である.
(iii) 直線$\ell$上で線分$\mathrm{CB}$を$2:1$に外分する点を$\mathrm{D}$とし,直線$m$上で線分$\mathrm{AB}$を$3:2$に外分する点を$\mathrm{E}$とするとき,四角形$\mathrm{ACED}$の面積は$[エ]$である.

(2)座標平面上に定点$\mathrm{A}(-1,\ 0)$と$\mathrm{B}(1,\ 0)$が与えられているとし,動点$\mathrm{P}$,$\mathrm{Q}$は,それぞれ$\mathrm{A}$および$\mathrm{B}$とは一致しないところを動くものとするとき,次の各問いに答えよ.

(i) 点$\mathrm{P}(x,\ y)$が$\angle \mathrm{APB}={90}^\circ$を満たすように動くとき,点$\mathrm{P}$の$y$座標の最大値は$[オ]$である.
(ii) 点$\mathrm{Q}(x,\ y)$が$\angle \mathrm{AQB}={120}^\circ$を満たすように動くとき,点$\mathrm{Q}$の$y$座標の最大値は$[カ]$であり,また,点$\mathrm{Q}$が動いてできる曲線に$2$点$\mathrm{A}$,$\mathrm{B}$を付け加えた曲線を$C$とすると,曲線$C$が囲む部分の面積は$[キ]$である.

(3)$a$を正の実数とし,$\displaystyle a \neq \frac{1}{2}$であるとする.曲線$C:y=x^2-2x$上の$2$点$\mathrm{P}$,$\mathrm{Q}$を考える.点$\mathrm{P}$の座標を$\displaystyle \left( \frac{3}{2},\ -\frac{3}{4} \right)$とし,点$\mathrm{Q}$の座標を$(a+1,\ a^2-1)$とする.点$\mathrm{P}$を通り$\mathrm{P}$における$C$の接線に直交する直線を$\ell$とし,点$\mathrm{Q}$を通り$\mathrm{Q}$における$C$の接線に直交する直線を$m$とする.$2$直線$\ell$と$m$の交点が曲線$C$上にあるとき,次の各問いに答えよ.

(i) $a$の値は$[ク]$である.
(ii) $2$直線$\ell$,$m$と曲線$C$とで囲まれた領域で$x \geqq 0$を満たす部分の面積は$[ケ]$である.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
スポンサーリンク

「垂直」とは・・・

 まだこのタグの説明は執筆されていません。