タグ「垂直」の検索結果

22ページ目:全311問中211問~220問を表示)
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
鳥取大学 国立 鳥取大学 2012年 第3問
点$\mathrm{A}(1,\ 2,\ 4)$を通り,ベクトル$\overrightarrow{n}=(-3,\ 1,\ 2)$に垂直な平面を$\alpha$とする.平面$\alpha$に関して同じ側に$2$点$\mathrm{P}(-2,\ 1,\ 7)$,$\mathrm{Q}(1,\ 3,\ 7)$がある.次の問いに答えよ.

(1)平面$\alpha$に関して点$\mathrm{P}$と対称な点$\mathrm{R}$の座標を求めよ.
(2)平面$\alpha$上の点で,$\mathrm{PS}+\mathrm{QS}$を最小にする点$\mathrm{S}$の座標とそのときの最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$\mathrm{ABCDE}$を$1$辺の長さが$1$の正方形$\mathrm{ABCD}$を底面とし,$4$個の正三角形を側面とする正四角錐とする.
(図は省略)

(1)$\triangle \mathrm{CDE}$の重心を$\mathrm{G}$とする.ベクトル$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AG}} = [セ]$となる.
(2)$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}$が平面$\alpha$上の任意のベクトルと垂直なとき,$\overrightarrow{p}$は平面$\alpha$と垂直であるという.$\overrightarrow{p} = a\, \overrightarrow{\mathrm{AB}} + b\, \overrightarrow{\mathrm{AD}} + c\, \overrightarrow{\mathrm{AE}}\ (a,\ b,\ c\text{は実数})$が$\triangle \mathrm{CDE}$を含む平面と垂直なとき,$a:b:c=[ソ]$である.よって,$|\overrightarrow{p}|=1$かつ$\overrightarrow{p} \cdot \overrightarrow{\mathrm{AD}} > 0$となるように$a,\ b,\ c$を定めると,$\overrightarrow{p} = [タ]$となる.
(3)正四角錐$\mathrm{ABCDE}$の$\triangle \mathrm{CDE}$に,各辺の長さが$1$の正四面体$\mathrm{CDEF}$を貼り付ける.ベクトル$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AF}}=[チ]$となる.また,$\mathrm{H}$を辺$\mathrm{EC}$の中点とすると,$\overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HF}}= [ツ]$であり,$\triangle \mathrm{AHF}$の面積は[テ]である.
東京理科大学 私立 東京理科大学 2012年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$2$つのベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$が
\[ |\overrightarrow{\mathrm{OA}}| = 2\sqrt{3}, \quad |\overrightarrow{\mathrm{OB}}|=\sqrt{15}, \quad \overrightarrow{\mathrm{OA}}\cdot\overrightarrow{\mathrm{OB}} = 8 \]
を満たしているとする.ここで,$|\overrightarrow{\mathrm{OA}}|,\ |\overrightarrow{\mathrm{OB}}|$はそれぞれ$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$の大きさを表し,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を表すものとする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とおくと
\[ \cos \theta = \frac{[ア]}{[イウ]} \sqrt{[エ]} \]
となる.\\
\quad また,$\triangle \mathrm{OAB}$の面積は$\sqrt{[オカ]}$である.
(2)線分$\mathrm{AB}$上の点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{AB}}$が垂直となるようにとる.このとき,点$\mathrm{C}$は線分$\mathrm{AB}$を$[キ]:[ク]$に内分する点である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第3問
$n$を$3$以上の整数とする.$xyz$空間の平面$z=0$上に,$1$辺の長さが$4$の正$n$角形$P$があり,$P$の外接円の中心を$\mathrm{G}$とおく.半径$1$の球$B$の中心が$P$の辺に沿って$1$周するとき,$B$が通過してできる立体を$K_n$とする.このとき,次の問いに答えよ.

(1)$P$の隣り合う$2$つの頂点$\mathrm{P}_1$,$\mathrm{P}_2$をとる.$\mathrm{G}$から辺$\mathrm{P}_1 \mathrm{P}_2$に下ろした垂線と$\mathrm{P}_1 \mathrm{P}_2$との交点を$\mathrm{Q}$とするとき,$\mathrm{GQ}>1$となることを示せ.
(2)次の各問に答えよ.

(i) $K_n$を平面$z=t (-1 \leqq t \leqq 1)$で切ったときの断面積$S(t)$を$t$と$n$を用いて表せ.
(ii) $K_n$の体積$V(n)$を$n$を用いて表せ.

(3)$\mathrm{G}$を通り,平面$z=0$に垂直な直線を$\ell$とする.$K_n$を$\ell$のまわりに$1$回転させてできる立体の体積$W(n)$を$n$を用いて表せ.
(4)$\displaystyle\lim_{n \to \infty}\frac{V(n)}{W(n)}$を求めよ.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$\sqrt{2} \div \sqrt[4]{4} \times \sqrt[12]{32} \div \sqrt[6]{2}=2^a$とすると$a=[ア]$である.
(2)座標空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 2,\ 1)$,$\mathrm{B}(1,\ 3,\ 5)$,$\mathrm{C}(x,\ y,\ z)$がある.ベクトル$\overrightarrow{\mathrm{OC}}$は,ベクトル$\overrightarrow{\mathrm{OA}}$およびベクトル$\overrightarrow{\mathrm{OB}}$と垂直である.このとき,$(x,\ y,\ z)=[イ]$である.ただし,$x>0$,$|\overrightarrow{\mathrm{OC}}|=1$とする.
(3)$i$を虚数単位として,複素数$x=\sqrt{3}+\sqrt{7}i$を考える.$x$と共役な複素数を$\overline{x}$とするとき,$x^3+\overline{x}^3$の値は$[ウ]$である.
(4)$\log_2x+\log_4y=1$のとき,$x^2+y$の最小値は$[エ]$である.
(5)$4$つの数字$0,\ 1,\ 2,\ 6$から,$18$で割り切れる$4$桁の数を作るとすると$[オ]$通りできる.ただし,同じ数字は$2$度以上使わないものとする.
(6)$\cos 75^\circ$の値は$[カ]$である.
(7)$\displaystyle \left( x^3-\frac{1}{2} \right)^{10}$の展開式における$x^{15}$の係数は$[キ]$である.
(8)三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とする.$\angle \mathrm{OAC}=40^\circ$,$\angle \mathrm{OCB}=25^\circ$のとき,$\angle \mathrm{AOC}=[ク]$であり,$\angle \mathrm{ABO}=[ケ]$である.
北海学園大学 私立 北海学園大学 2012年 第2問
座標平面上に,$5$本の直線$x=k (k=0,\ 1,\ 2,\ 3,\ 4)$と,これらと垂直な$10$本の直線$y=l (l=0,\ 1,\ 2,\ \cdots,\ 9)$がある.これらの直線によってできる四角形のうちで,次の個数を求めよ.

(1)四角形
(2)正方形
(3)面積が$4$以上の四角形
北海学園大学 私立 北海学園大学 2012年 第3問
座標平面上に,$5$本の直線$x=k (k=0,\ 1,\ 2,\ 3,\ 4)$と,これらと垂直な$10$本の直線$y=l (l=0,\ 1,\ 2,\ \cdots,\ 9)$がある.これらの直線によってできる四角形のうちで,次の個数を求めよ.

(1)四角形
(2)正方形
(3)面積が$4$以上の四角形
東京理科大学 私立 東京理科大学 2012年 第4問
$\mathrm{O}$を原点とする座標空間の$4$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$,$\mathrm{D}(1,\ 1,\ -2)$について,次の各問いに答えよ.また,$0<m<1$とする.

(1)$\mathrm{AB}$を$m:(1-m)$に内分する点を$\mathrm{P}_m$とし,$\mathrm{OP}_m$を$m:1$に内分する点を$\mathrm{Q}_m$とする.このとき,$\mathrm{Q}_{\frac{1}{5}}$の座標は,$\displaystyle \left( \frac{[ラ]}{[リ][ル]},\ \frac{[レ]}{[ロ][ワ]},\ [ヲ] \right)$である.

(2)$\mathrm{OC}$を$m:1$に内分する点を$\mathrm{R}_m$,$\mathrm{AD}$の中点を$\mathrm{M}$とし,$\mathrm{R}_m \mathrm{M}$を$m:(1-m)$に内分する点を$\mathrm{S}_m$とすると,$\mathrm{S}_{\frac{1}{2}}$の座標は,$\displaystyle \left( \frac{[ン][あ]}{[い][う]},\ \frac{[え]}{[お][か]},\ \frac{[き]}{[く]} \right)$である.
(3)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{OA}}$について,
\[ \overrightarrow{\mathrm{CQ}_m} \cdot \overrightarrow{\mathrm{OA}}=\frac{1}{m+1}(-[け]m^2+[こ]m-[さ]) \]
である.したがって,この$2$つのベクトルは垂直にはなりえない.
(4)$\overrightarrow{\mathrm{CQ}_m}$と$\overrightarrow{\mathrm{AB}}$が垂直となるような$m$の値は,$\displaystyle m=\frac{[し]}{[す]}$である.

(5)$\displaystyle \frac{m+1}{m} \times \mathrm{Q}_m \mathrm{S}_m$が最小となるのは$\displaystyle m=\frac{[せ][そ]}{[た][ち]}$のときであり,その最小値は$\displaystyle \sqrt{\frac{[つ][て]}{[と][な]}}$である.
南山大学 私立 南山大学 2012年 第2問
放物線$C:y=x^2-kx (k>0)$と直線$\ell:y=3x$がある.$C$と$\ell$の交点で原点$\mathrm{O}$以外の点を$\mathrm{A}$とする.$C$と$\ell$で囲まれた部分の面積を$S_1$,$C$と$x$軸で囲まれた部分の面積を$S_2$とする.

(1)$\mathrm{A}$の座標を$k$で表せ.
(2)$S_1$を$k$で表せ.
(3)$\mathrm{A}$を通り$x$軸に垂直な直線と,$x$軸および$C$で囲まれた部分の面積を$S_3$とする.$S_3$を$k$で表せ.
(4)$(3)$の$S_3$と$S_2$が等しいとき,$k$の値を求めよ.
スポンサーリンク

「垂直」とは・・・

 まだこのタグの説明は執筆されていません。