タグ「垂直」の検索結果

17ページ目:全311問中161問~170問を表示)
北里大学 私立 北里大学 2013年 第1問
次の$[ ]$にあてはまる答を求めよ.

(1)ベクトル$\overrightarrow{a}=(x,\ 11,\ 2y)$,$\overrightarrow{b}=(x-4,\ 2,\ y-6)$を考える.$\overrightarrow{a}$と$\overrightarrow{b}$が平行であるとき,$x=[ ]$であり,$y=[ ]$である.また,$\overrightarrow{a}$と$\overrightarrow{b}$が垂直であるとき,$x=[ ]$であり,$y=[ ]$である.
(2)方程式$\log_2(x^2+4)-\log_2x=2$を解くと,$x=[ ]$である.また,不等式$\log_2(x^2+4)-\log_2x \geqq \log_25$を解くと,$[ ]$である.
北里大学 私立 北里大学 2013年 第2問
$a,\ b$を$a<b$を満たす実数とし,$f(x)=x^2+3$とおく.$2$次関数$y=f(x)$のグラフ上の点$\mathrm{P}(a,\ f(a))$における接線を$\ell$,点$\mathrm{Q}(b,\ f(b))$における接線を$m$とするとき,直線$\ell$と$m$は原点で交わっているものとする.

(1)点$\mathrm{P}$で直線$\ell$と接し,点$\mathrm{Q}$で直線$m$と接する円の方程式は
\[ x^2+(y-[キ])^2=[ク] \]
である.
(2)点$\mathrm{P}$で直線$\ell$と垂直に交わる直線と点$\mathrm{Q}$で直線$m$と垂直に交わる直線の交点を$\mathrm{R}$とする.このとき,線分$\mathrm{PR}$と線分$\mathrm{QR}$および放物線$y=f(x)$で囲まれた図形の面積は$[ケ]$である.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第4問
$a,\ d$は$ad \neq 0$をみたす実数とする.$\mathrm{O}$を原点とする座標平面上において,行列$A=\left( \begin{array}{cc}
a & -1 \\
0 & d
\end{array} \right)$の表す$1$次変換(移動)を$f$とし,以下の$2$つの条件をみたす直線$\ell$がただ$1$つ存在するときを考える.

$(ⅰ)$ $\ell$は$\mathrm{O}$を通る.
$(ⅱ)$ $f$によって,$\ell$上の点はすべて$\ell$と垂直に交わるある直線$m$上に移される.

このとき,次の問いに答えよ.

(1)$a$と$d$の関係式を求めよ.
(2)$d>0$とする.$\ell$上に$\mathrm{O}$からの距離が$1$で$x$座標が正となる点$\mathrm{P}$をとり,$\mathrm{P}$の$f$による像を$\mathrm{Q}$とする.線分$\mathrm{OQ}$の長さを求めよ.また,直線$\mathrm{PQ}$と$y$軸が交わる点を$\mathrm{R}$とするとき,線分$\mathrm{OR}$の長さが最小となるように$a$と$d$の値を定めよ.
北里大学 私立 北里大学 2013年 第1問
次の$[ ]$にあてはまる答を記せ.ただし,$(5)$において,必要ならば$\log_{10}2=0.3010$を用いてよい.

(1)$\mathrm{OA}:\mathrm{OB}=1:3$である三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{N}$とし,$\angle \mathrm{AOB}$の大きさを$\theta$とする.

(i) $\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{a}$と$\overrightarrow{b}$を用いて$\overrightarrow{\mathrm{NA}}$を表すと,$\overrightarrow{\mathrm{NA}}=[ ] \overrightarrow{a}-[ ] \overrightarrow{b}$である.
(ii) $\overrightarrow{\mathrm{ON}}$と$\overrightarrow{\mathrm{NA}}$が垂直であるとき,$\cos \theta$の値は$[ ]$である.

(2)$(x+2y+3z)^6$の展開式における$x^4y^2$の係数は$[ ]$であり,$x^3y^2z$の係数は$[ ]$である.
(3)点$(x,\ y)$が不等式$x^2+y^2 \leqq 4$の表す領域を動くとする.このとき,$3x+y$は,$x=[ ]$,$y=[ ]$において最大値$[ ]$をとり,$x=[ ]$,$y=[ ]$において最小値$[ ]$をとる.
(4)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つの袋があり,$\mathrm{A}$には赤球$2$個と白球$2$個,$\mathrm{B}$には白球$1$個と青球$3$個,さらに,$\mathrm{C}$には赤球$2$個と白球$1$個と青球$1$個が入っている.いま,$\mathrm{A}$から$1$個の球を取り出し,$\mathrm{B}$から$1$個の球を取り出し,$\mathrm{C}$から$1$個の球を取り出す.

(i) 取り出した$3$個の球の色が$1$種類となる確率は$[ ]$である.
(ii) 取り出した$3$個の球の色が$2$種類となる確率は$[ ]$である.
(iii) 取り出した$3$個の球の色が$3$種類となる確率は$[ ]$である.

(5)条件$a_1=5$,$a_{n+1}=2a_n-3$によって定まる数列$\{a_n\}$の一般項は$a_n=[ ]$で与えられる.この数列の初項から第$n$項までの和を$S_n$とおくとき,$S_8$の値は$[ ]$であり,不等式$\displaystyle \frac{S_n}{3}>n+16666$を満たす正の整数$n$のうちで最小のものは$[ ]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第3問
次の問いに答えよ.

(1)$f(t)=be^{at}$($a,\ b$:定数)を微分した答えを$f(t)$を用いて表すと,
\[ \frac{d}{dt}f(t)=[ ] \qquad \cdots\cdots① \]
である.
(2)物体が水平面に対し垂直な方向に落下するものとする.デカルトは時刻$t$での物体の速度について,速度が落下距離に比例するものと考えた.これに従えば,時刻$t$での物体の落下距離を$f(t)$とし,$f(0)=x_0>0$,その比例定数を$c_0>0$とするとき,$①$を満たすような関数が$f(t)=be^{at}$の形で表わされることを用いると$f(t)=[ ]$である.
(3)一方,ガリレオは速度が落下した時間に比例すると考えた.時刻$T$で落下しはじめた物体の,時刻$t (t \geqq T)$での高さを$g(t)$とし,$g(T)=x_1>0$,その比例定数を$c_1>0$とするとき,$g(t)=[ ]$である.
北里大学 私立 北里大学 2013年 第3問
次の文中の$[ア]$~$[ホ]$にあてはまる最も適切な数を答えなさい.

点$\mathrm{A}$の座標を$(4,\ 0)$,点$\mathrm{B}$の座標を$(0,\ 3)$とし,点$\mathrm{A}$,点$\mathrm{B}$を通る直線$L$と点$\mathrm{A}$で接する半径$r$の円を考える.このような円は,直線$L$より上の領域と下の領域にそれぞれ存在する.直線$L$より上の領域に存在する円を$C_1$,下の領域に存在する円を$C_2$とする.また,点$\mathrm{B}$を通る円$C_1$へのもう$1$本の接線が円と接する点を$\mathrm{P}_1$,同じく,点$\mathrm{B}$を通る円$C_2$へのもう$1$本の接線が円と接する点を$\mathrm{P}_2$とする.
(図は省略)
(1)円の半径$r$が線分$\mathrm{AB}$の長さ$R$と等しいとする.
円$C_1$の中心の座標は$([ア],\ [イ])$,円$C_2$の中心の座標は$([ウ],\ [エ])$である.
また,点$\mathrm{P}_1$の座標は$([オ],\ [カ])$,点$\mathrm{P}_2$の座標は$([キ],\ [ク])$である.
(2)円の半径$r$が線分$\mathrm{AB}$の長さ$R$の$2$倍であるとする.
円$C_1$の中心の座標は$([ケ][コ],\ [サ])$,円$C_2$の中心の座標は$([シ],\ [ス])$である.
点$\mathrm{B}$と円$C_1$の中心を通る直線は,線分$\mathrm{AP}_1$を垂直二等分する.その交点を$\mathrm{Q}_1$とする.同様に,点$\mathrm{B}$と円$C_2$の中心を通る直線は,線分$\mathrm{AP}_2$を垂直二等分する.その交点を$\mathrm{Q}_2$とする.
点$\mathrm{B}$と円$C_1$の中心を通る直線の式は$\displaystyle y=\frac{[セ]}{[ソ]}x+[タ]$であり,点$\mathrm{A}$と点$\mathrm{P}_1$を通る直線の式は,$\displaystyle y=-\frac{[ソ]}{[セ]}x+[チ]$と表すことができる.
同様に,点$\mathrm{B}$と円$C_2$の中心を通る直線の式は$\displaystyle y=\frac{[ツ][テ]}{[ト]}x+[タ]$であり,点$\mathrm{A}$と点$\mathrm{P}_2$を通る直線の式は,$\displaystyle y=-\frac{[ト]}{[ツ][テ]}x+\frac{[ナ]}{[ニ][ヌ]}$と表すことができる.
点$\mathrm{Q}_2$の座標は$\displaystyle \left( \frac{[ネ]}{[ノ]},\ \frac{[ハ]}{[ノ]} \right)$,点$\mathrm{P}_2$の座標は$\displaystyle \left( \frac{[ヒ][フ]}{[ヘ]},\ \frac{[ホ]}{[ヘ]} \right)$となる.
北里大学 私立 北里大学 2013年 第1問
次の各文の$[ ]$にあてはまる答を求めよ.

(1)$\mathrm{AB}=4$,$\mathrm{AD}=3$である四角形$\mathrm{ABCD}$において,$2$本の対角線の交点$\mathrm{E}$は線分$\mathrm{BD}$を$3:2$に内分し,線分$\mathrm{AC}$を$1:4$に内分しているとする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおく.このとき,ベクトル$\overrightarrow{\mathrm{AC}}$は$\overrightarrow{\mathrm{AC}}=[ア] \overrightarrow{b}+[イ] \overrightarrow{d}$と表せる.さらに,線分$\mathrm{AC}$と線分$\mathrm{BD}$が垂直に交わるとき,内積$\overrightarrow{b} \cdot \overrightarrow{d}$の値は$[ウ]$であり,四角形$\mathrm{ABCD}$の面積は$[エ]$である.
(2)$6$人の生徒$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$,$\mathrm{d}$,$\mathrm{e}$,$\mathrm{f}$を$3$つの部屋$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$に入れる.各部屋は$6$人まで入れることができる.このとき,空室があってもよいとして,$3$つの部屋への生徒の入れ方は全部で$[オ]$通りある.また,各部屋に$2$人ずつ入るような生徒の入れ方は全部で$[カ]$通りあり,空室ができないような生徒の入れ方は全部で$[キ]$通りある.
(3)$x$の関数$f(x)$を$\displaystyle f(x)=\int_1^{2x} |t(t-x)| \, dt$により定める.このとき,$f(x) \geqq 0$となるための$x$の条件は$[ク]$である.また,$f(1)$の値は$f(1)=[ケ]$であり,$x>1$のときの$f(x)$を求めると$f(x)=[コ]$である.
(4)三角形$\mathrm{ABC}$の内心を$\mathrm{I}$とし,三角形$\mathrm{ABC}$の外接円と直線$\mathrm{AI}$との交点で$\mathrm{A}$以外のものを$\mathrm{D}$とする.$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\mathrm{AD}=4$のとき,$\cos \angle \mathrm{BAD}=[サ]$であり,$\mathrm{BD}=[シ]$,$\mathrm{CD}=[ス]$,$\mathrm{BC}=[セ]$である.
吉備国際大学 私立 吉備国際大学 2013年 第2問
水平面に高さ$10 \, \mathrm{m}$の線分$\mathrm{AB}$が垂直に立っている(点$\mathrm{A}$が水平面上).

(1)水平面上の点$\mathrm{P}$から$\mathrm{B}$を見上げる角度が${30}^\circ$のとき,$\mathrm{AP}$を求めよ.
(2)水平面上の点$\mathrm{Q}$から$\mathrm{B}$を見上げる角度が${30}^\circ$以上${60}^\circ$以下であるとき,$\mathrm{Q}$の存在する領域の面積を求めよ.
(3)水平面上$1 \, \mathrm{m}$の高さの点$\mathrm{R}$から$\mathrm{B}$を見上げる角度が${30}^\circ$以上${60}^\circ$以下であるとき,$\mathrm{R}$の存在する領域の面積を求めよ.
大阪歯科大学 私立 大阪歯科大学 2013年 第4問
$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{O}$を中心とする半径$1$の円周上にあり,$13 \overrightarrow{\mathrm{OA}}+12 \overrightarrow{\mathrm{OB}}+5 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$を満たしている.

(1)$\mathrm{OB}$と$\mathrm{OC}$は垂直であることを示せ.
(2)$\angle \mathrm{AOB}=\alpha$,$\angle \mathrm{AOC}=\beta$とおく.$\cos \alpha$および$\cos \beta$の値を求めよ.
(3)$\mathrm{A}$から$\mathrm{BC}$にひいた垂線と$\mathrm{BC}$との交点を$\mathrm{H}$とする.線分$\mathrm{AH}$の長さを求めよ.
東京薬科大学 私立 東京薬科大学 2013年 第4問
$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$である長方形の紙$\mathrm{ABCD}$が平らな机上に置かれている.$\mathrm{M}$を$\mathrm{AB}$の中点とすると,$\angle \mathrm{MCB}={[あい]}^\circ$である.いま,ある直線$\ell$に沿ってこの紙を折り曲げて,頂点$\mathrm{C}$が$\mathrm{M}$に重なるようにする.$\ell$と辺$\mathrm{BC}$との交点を$\mathrm{E}$とすると,$\mathrm{CE}$の長さは$\displaystyle \frac{[う] \sqrt{[え]}}{[お]}$である.次に,折り畳まれた紙を開き,折り曲げられた部分が机上に垂直になったところで止める(頂点$\mathrm{C}$は空中にある).このとき,$\mathrm{AC}=[か]$,$\mathrm{BC}=\sqrt{[き]}$,内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[く]$となる.
スポンサーリンク

「垂直」とは・・・

 まだこのタグの説明は執筆されていません。