タグ「図形」の検索結果

58ページ目:全857問中571問~580問を表示)
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
長崎大学 国立 長崎大学 2012年 第8問
実数$x,\ y$が連立不等式
\[ \left\{
\begin{array}{ll}
10^{10}<2^x3^y<10^{11} & \cdots\cdots (\mathrm{A}) \\
10^9<3^x2^y<10^{10} & \cdots\cdots (\mathrm{B})
\end{array}
\right. \]
を満たすとき,次の問いに答えよ.

(1)連立不等式$(\mathrm{A})$,$(\mathrm{B})$が表す$xy$平面上の領域は,どのような図形であるか答えよ.また,その理由を述べよ.
(2)連立不等式$(\mathrm{A})$,$(\mathrm{B})$を満たす実数$x,\ y$において,$x+y$がとりうる値の範囲,および$y-x$がとりうる値の範囲をそれぞれ求めよ.
(3)連立不等式$(\mathrm{A})$,$(\mathrm{B})$を満たす整数$x,\ y$を考える.このとき,$y-x$が最大となる整数$x,\ y$を求めよ.ただし,$\log_{10}2=0.3010,\ \log_{10}3=0.4771$として計算してよい.
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
山梨大学 国立 山梨大学 2012年 第2問
$a$を定数,$h$を正の定数とし,放物線$C:y=x^2$と直線$x=a$との交点を$\mathrm{P}$,放物線$C$と直線$x=a+h$との交点を$\mathrm{Q}$とする.また,直線$\mathrm{PQ}$に平行で放物線$C$に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と直線$x=a$との交点を$\mathrm{R}$,直線$\ell$と直線$x=a+h$との交点を$\mathrm{S}$とする.直線$\mathrm{PQ}$と放物線$C$に囲まれた図形の面積を$A_1$,四角形$\mathrm{PRSQ}$の面積を$A_2$としたとき,$\displaystyle \frac{A_1}{A_2}$の値は$a$と$h$に無関係に一定となることを示せ.
山梨大学 国立 山梨大学 2012年 第3問
円$C:x^2+y^2=1$と点$\mathrm{A}(x_0,\ 0)$があり,$0<x_0<1$とする.原点$\mathrm{O}$と円$C$上の点$\mathrm{B}$を通る直線$\ell_1$と線分$\mathrm{AB}$の垂直二等分線$\ell_2$の交点を$\mathrm{P}$とする.点$\mathrm{B}$が円$C$上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めよ.また,その方程式が表す図形を下の座標平面上に図示せよ.
(図は省略)
東京海洋大学 国立 東京海洋大学 2012年 第3問
定数$a (a \neq 1)$に対し,$f(x)=x^3-(a+2)x^2+(2a+1)x-a$とする.

(1)方程式$f(x)=0$の解を$a$を用いて表せ.
(2)関数$f(x)$の極値を$a$を用いて表せ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を$a$を用いて表せ.
ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
東京海洋大学 国立 東京海洋大学 2012年 第5問
曲線$C_1:y=\log x$と放物線$C_2:y=ax^2$(ただし,$a$は正の定数)を考える.

(1)$C_1$と$C_2$が共有点$\mathrm{P}$において共通接線をもつとき(すなわち,点$\mathrm{P}$における$C_1$と$C_2$の接線が同一のとき),$a$の値と$\mathrm{P}$の座標を求めよ.
(2)$(1)$のとき,$C_1,\ C_2$および$x$軸で囲まれた図形の面積を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第2問
$a$を正の定数とする.放物線$C:y=(1-x)(x+a)$と$C$上の動点$\mathrm{P}(t,\ (1-t)(t+a))$について,次の問に答えよ.ただし,$0<t<1$とする.

(1)$x$軸に関して$\mathrm{P}$と対称な点を$\mathrm{Q}$,$xy$平面の原点を$\mathrm{O}$とし,放物線$C$と$y$軸および$2$つの線分$\mathrm{PQ}$,$\mathrm{OQ}$とで囲まれた図形の面積を$S$とするとき,$S$を$t$と$a$で表せ.
(2)$S$を最大にする$t$が$\displaystyle \frac{3}{4}<t<\frac{4}{5}$の範囲に存在することを示せ.
京都教育大学 国立 京都教育大学 2012年 第6問
$2$つの関数
\[ f(x)=x^3+1,\quad g(x)=f(1)+f^\prime(1)(x-1)+\frac{1}{2}f^{\prime\prime}(1)(x-1)^2 \]
について,次の問に答えよ.

(1)導関数の定義に従って$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$g(x)$を求めよ.
(3)$0 \leqq x \leqq 1$において常に$f(x) \leqq g(x)$であることを証明せよ.
(4)$2$つの曲線$y=f(x)$,$y=g(x)$と$y$軸で囲まれる図形の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第2問
次の問いに答えよ.

(1)$a,\ b$を実数で,$a \neq 0$とする.$\displaystyle c=\frac{2+3ai}{a-bi}$が純虚数のとき,$b$と$c$の値を求めよ.
(2)定積分$\displaystyle \int_0^{2\pi} |x \cos \displaystyle\frac{x|{3}} \, dx$を求めよ.
(3)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
(4)座標平面上の曲線
\[ x=2 \cos \theta+1,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
で囲まれた図形を$x$軸の回りに$1$回転して得られる回転体の体積を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。