タグ「図形」の検索結果

22ページ目:全857問中211問~220問を表示)
宇都宮大学 国立 宇都宮大学 2015年 第5問
$m \geqq 1$を整数とする.関数$f(x)=(\pi-x) \sin mx (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f(x)=0$となるすべての$x (0 \leqq x \leqq \pi)$の値を,小さい順に$x_1,\ x_2,\ \cdots,\ x_N$で表す.このとき,$N$を$m$の式で表し,$x_k (k=1,\ 2,\ \cdots,\ N)$を$k$と$m$の式で表せ.
(2)$(1)$で定めた$x_k$と$x_{k+1} (k=1,\ 2,\ \cdots,\ N-1)$に対し,曲線$y=f(x) (x_k \leqq x \leqq x_{k+1})$と$x$軸で囲まれた図形の面積を$S_k$とするとき,$S_k$を$k$と$m$の式で表せ.
(3)$(2)$で求めた面積$S_k$の$k=1$から$N-1$までの和$\displaystyle \sum_{k=1}^{N-1} S_k$を求めよ.
京都教育大学 国立 京都教育大学 2015年 第6問
区間$[0,\ 1]$を$n$等分して得た分点を
\[ 0=x_0<x_1<\cdots <x_n=1 \]
とならべる.すなわち,
\[ x_k=\frac{k}{n} \quad (k=0,\ 1,\ \cdots,\ n) \]
とおく.$f(x)=x^2+1 (0 \leqq x \leqq 1)$に対して,$4$点$(x_{k-1},\ 0)$,$(x_k,\ 0)$,$(x_k,\ f(x_k))$,$(x_{k-1},\ f(x_{k-1}))$を頂点とする台形$S_k (k=1,\ 2,\ \cdots,\ n)$の$k=1$から$k=n$までの集まりを$R_n$とおく.

(1)図形$R_4$を図示せよ.
(2)図形$R_n$の面積を$r_n$とするとき,$\displaystyle \lim_{n \to \infty}r_n=\frac{4}{3}$であることを証明せよ.
宇都宮大学 国立 宇都宮大学 2015年 第4問
$u$を任意の実数とするとき,次の問いに答えよ.

(1)座標平面上の点$\mathrm{P}(u,\ u-1)$を通り,曲線$y=x^2$に接する直線は,ちょうど$2$本あることを示せ.
(2)$(1)$における$2$直線と曲線$y=x^2$の接点を,それぞれ$\mathrm{A}(\alpha,\ \alpha^2)$,$\mathrm{B}(\beta,\ \beta^2)$とするとき,$\alpha$と$\beta$をそれぞれ$u$の式で表せ.ただし,$\alpha<\beta$とする.
(3)$(1)$における$2$直線と曲線$y=x^2$で囲まれた図形の面積を$S$とするとき,$S$を$u$の式で表せ.
(4)$(3)$で求めた面積$S$の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
$f(x)=(x-1) |x-3|-4x+12$とする.また,曲線$y=f(x)$上の点$\mathrm{P}(1,\ f(1))$における接線を$\ell$とする.以下に答えなさい.

(1)$y=f(x)$のグラフをかきなさい.
(2)直線$\ell$の方程式を求めなさい.
(3)曲線$y=f(x)$と直線$\ell$の点$\mathrm{P}$以外の共有点$\mathrm{Q}$の座標を求めなさい.
(4)曲線$y=f(x)$と直線$\ell$で囲まれた図形の面積$S$を求めなさい.
早稲田大学 私立 早稲田大学 2015年 第5問
$a>0$とする.$xy$平面上に点$\mathrm{A}(-\sqrt{2}a,\ 0)$,$\mathrm{B}(\sqrt{2}a,\ 0)$を固定する.動点$\mathrm{P}(x,\ y)$は条件$\mathrm{AP}+\mathrm{BP}=4a$をみたすものとする.次の問に答えよ.

(1)点$\mathrm{P}$の軌跡として得られる曲線の方程式を求めよ.ただし,答のみでよい.
(2)$(1)$の曲線の$-\sqrt{2}a \leqq x \leqq \sqrt{2}a$の部分と,直線$x=-\sqrt{2}a$,直線$x=\sqrt{2}a$で囲まれる図形を$x$軸のまわりに$1$回転してできる立体を考える.この立体の体積$V$を求めよ.
(3)$(2)$の立体の表面積$S$を求めよ.ここで,$y=f(x)$のグラフの$p \leqq x \leqq q$の部分を$x$軸のまわりに$1$回転してできる曲面の面積は
\[ 2\pi \int_p^q \sqrt{\{f(x)\}^2+\{f(x)f^\prime(x)\}^2} \, dx \]
として計算してよい.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
立教大学 私立 立教大学 2015年 第2問
座標平面上に$2$つの放物線$C_1:y=x^2$と$C_2:y=ax^2+bx+c (a \neq 0)$がある.この$2$つの放物線$C_1$と$C_2$が$x=-1$で交わり,その点で各々の接線が直交するとき,次の問に答えよ.

(1)$b,\ c$をそれぞれ$a$を用いて表せ.
(2)$2$つの放物線$C_1$と$C_2$が,さらに$\displaystyle x=\frac{1}{4}$で交わるときの$a$の値を求めよ.
(3)$a$を$(2)$で求めた値とするとき,放物線$C_2$の$x=-1$での接線$\ell_1$,$\displaystyle x=\frac{1}{4}$での接線$\ell_2$と$C_2$で囲まれた図形の面積$S$を求めよ.
上智大学 私立 上智大学 2015年 第2問
$f(x)=x^3-3x^2-x+3$とし,座標平面上の曲線$y=f(x)$の点$\mathrm{P}(p,\ f(p))$における接線を$\ell$とする.ただし,$p \neq 3$とする.放物線$C:y=ax^2+bx+c$は点$(3,\ 0)$を通り,直線$\ell$と$\mathrm{P}$で接する.

(1)$a,\ b,\ c$をそれぞれ$p$の式で表すと,
\[ a=[セ]p,\ b=[ソ]p^2+[タ]p+[チ],\ c=[ツ]p^2+[テ] \]
である.
(2)$\displaystyle \frac{1}{2}<p<3$とする.$C$およびその下側の部分で,$C$と直線$\displaystyle x=\frac{1}{2}$および$x$軸で囲まれる図形の面積を$S_1$とおき,$C$およびその上側の部分で,$C$と$x$軸で囲まれる図形の面積を$S_2$とおく.このとき,
\[ S_1-S_2=\frac{25}{24}\left( [ト]p^2+[ナ]p+[ニ] \right) \]
であり,$S_1=S_2$となる$p$の値は
\[ p=\frac{[ヌ]}{[ネ]}+\frac{\sqrt{[ノ]}}{[ハ]} \]
である.
(3)$p=1$のとき,
\[ S_1+S_2=\frac{[ヒ]}{[フ]} \]
である.
東京理科大学 私立 東京理科大学 2015年 第5問
$x$を$2$より小さい実数として,関数$f(x)$を
\[ f(x)=\frac{4x-7}{x-2} \quad (x<2) \]
と定め,座標平面上で曲線$y=f(x)$を考える.

(1)曲線$y=f(x)$のグラフの概形を座標平面上に描け.
(2)点$\displaystyle \left( \frac{5}{4},\ f \left( \frac{5}{4} \right) \right)$における曲線$y=f(x)$の接線の方程式を求めよ.
(3)直線$5x-2y=a$が曲線$y=f(x)$の法線となるときの実数$a$の値を求めよ.
(4)曲線$y=f(x)$と$x$軸,$y$軸で囲まれた図形の面積$S$を求めよ.
(5)曲線$y=f(x)$と$x$軸,$y$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
東京理科大学 私立 東京理科大学 2015年 第2問
$t$を$0<t<1$を満たす実数として,関数$f(x)$を
\[ f(x)=-x^2+(1+t^2)x-t^2 \]
と定める.座標平面において,原点$\mathrm{O}$から放物線$y=f(x)$へ引いた接線のうち,接点の$x$座標が正のものを考える.その接点を$\mathrm{P}(p,\ f(p))$とおく.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)放物線$y=f(x)$の$x \leqq p$の部分,$x$軸,直線$x=p$で囲まれる図形の面積を$S_1$とする.$S_1$を$t$を用いて表せ.
(3)線分$\mathrm{OP}$,$x$軸,直線$x=p$で囲まれる図形の面積を$S_2$とし,$(2)$の$S_1$に対して$S=S_2-S_1$とおく.$t$が$0<t<1$の範囲を動くとき$S$を最大にする$t$の値を求めよ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。