タグ「図形」の検索結果

14ページ目:全857問中131問~140問を表示)
兵庫県立大学 公立 兵庫県立大学 2016年 第3問
関数$\displaystyle f(x)=\frac{\log x}{\sqrt{x}} (1 \leqq x \leqq 8)$について,次の問いに答えよ.

(1)$f(x)$の最大値,最小値を求めよ.
(2)曲線$y=f(x)$,$x$軸,および直線$x=e$とで囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
札幌医科大学 公立 札幌医科大学 2016年 第1問
次の問に答えよ.

(1)空間上の$3$点を$\mathrm{A}(0,\ 1,\ 3)$,$\mathrm{B}(-1,\ 3,\ 2)$,$\mathrm{C}(1,\ 2,\ -1)$とする.この$3$点を通る平面上に$\mathrm{D}(a,\ b,\ -1)$があるとき,$a$と$b$の関係式を求めよ.
(2)数列$\{a_n\}$は
\[ a_1=a>0,\quad a_{n+1}=16{a_n}^3 \quad (n=1,\ 2,\ \cdots) \]
をみたすものとする.

(i) 数列$\{b_n\}$を$b_n=\log_2 a_n$とするとき,$\{b_n\}$の一般項を$a$と$n$を用いて表せ.
(ii) 数列$\{a_n\}$の一般項を$a$と$n$を用いて表せ.
(iii) すべての$n$について$a_n=a$をみたすような$a$の値を求めよ.

(3)複素数平面において,等式$2 |z-4|=3 |z-3i|$をみたす点$z$の全体はどのような図形を表すか.ただし$i$は虚数単位とする.
札幌医科大学 公立 札幌医科大学 2016年 第4問
関数$f(x)=x+2 \cos x$を$0 \leqq x \leqq 2\pi$の範囲で考える.

(1)関数$y=f(x)$の極値と変曲点を求め,グラフの概形を描け.
(2)関数$y=f(x)$の二つの変曲点を通る直線を$\ell$とする.曲線$y=f(x)$と直線$\ell$とで囲まれる図形を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
東京大学 国立 東京大学 2015年 第3問
$a$を正の実数とし,$p$を正の有理数とする.座標平面上の$2$つの曲線$y=ax^p (x>0)$と$y=\log x (x>0)$を考える.この$2$つの曲線の共有点が$1$点のみであるとし,その共有点を$\mathrm{Q}$とする.以下の問いに答えよ.必要であれば,$\displaystyle \lim_{x \to \infty} \frac{x^p}{\log x}=\infty$を証明なしに用いてよい.

(1)$a$および点$\mathrm{Q}$の$x$座標を$p$を用いて表せ.
(2)この$2$つの曲線と$x$軸で囲まれる図形を,$x$軸のまわりに$1$回転してできる立体の体積を$p$を用いて表せ.
(3)$(2)$で得られる立体の体積が$2 \pi$になるときの$p$の値を求めよ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
大阪大学 国立 大阪大学 2015年 第2問
直線$\ell:y=kx+m (k>0)$が円$C_1:x^2+(y-1)^2=1$と放物線$\displaystyle C_2:y=-\frac{1}{2}x^2$の両方に接している.このとき,以下の問いに答えよ.

(1)$k$と$m$を求めよ.
(2)直線$\ell$と放物線$C_2$および$y$軸とで囲まれた図形の面積を求めよ.
神戸大学 国立 神戸大学 2015年 第1問
座標平面上の$2$つの曲線$\displaystyle y=\frac{x-3}{x-4}$,$\displaystyle y=\frac{1}{4}(x-1)(x-3)$をそれぞれ$C_1$,$C_2$とする.以下の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の交点をすべて求めよ.
(2)$2$曲線$C_1$,$C_2$の概形をかき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
広島大学 国立 広島大学 2015年 第4問
$\alpha,\ \beta$は$\alpha>0$,$\beta>0$,$\alpha+\beta<1$を満たす実数とする.三つの放物線
\[ C_1:y=x(1-x),\quad C_2:y=x(1-\beta-x),\quad C_3:y=(x-\alpha)(1-x) \]
を考える.$C_2$と$C_3$の交点の$x$座標を$\gamma$とする.また,$C_1$,$C_2$,$C_3$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\gamma$を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$\alpha,\ \beta$が$\displaystyle \alpha+\beta=\frac{1}{4}$を満たしながら動くとき,$S$の最大値を求めよ.
旭川医科大学 国立 旭川医科大学 2015年 第2問
$n$を正の整数とする.$2n \pi \leqq x \leqq (2n+1) \pi$の範囲で関数$f(x)=x \sin x$を考える.関数$f(x)$が極大値をとる$x$を$a_n$とし,曲線$y=f(x)$の変曲点を$(b_n,\ f(b_n))$とする.次の問いに答えよ.

(1)$a_n$と$b_n$はそれぞれ唯$1$つあって,$\displaystyle 2n \pi<b_n<2n \pi+\frac{\pi}{2}<a_n<(2n+1) \pi$を満たすことを示せ.
(2)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}(a_n-2n \pi) \qquad (2) \ \lim_{n \to \infty}(b_n-2n \pi) \qquad (3) \ \lim_{n \to \infty}f(b_n) \]
(3)曲線$y=f(x) (2n \pi \leqq x \leqq (2n+1) \pi)$と$x$軸とで囲まれた図形を,$3$つの直線$x=b_n$,$\displaystyle x=2n \pi+\frac{\pi}{2}$,$x=a_n$によって$4$つの部分に分ける.その面積を左から順に$S_1$,$S_2$,$S_3$,$S_4$とするとき,$(S_3+S_4)-(S_1+S_2)$の値を求めよ.
(4)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}S_1 \qquad (2) \ \lim_{n \to \infty}S_3 \qquad (3) \ \lim_{n \to \infty}(S_4-S_2) \]
金沢大学 国立 金沢大学 2015年 第2問
$a,\ b$は定数で,$ab>0$とする.放物線$C_1:y=ax^2+b$上の点$\mathrm{P}(t,\ at^2+b)$における接線を$\ell$とし,放物線$C_2:y=ax^2$と$\ell$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$と$C_2$のすべての交点の$x$座標を求めよ.
(3)点$\mathrm{P}$が$C_1$上を動くとき,$S$は点$\mathrm{P}$の位置によらず一定であることを示せ.
スポンサーリンク

「図形」とは・・・

 まだこのタグの説明は執筆されていません。